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A B S T R A C T

This study explores nanosecond-pulsed (ns-pulsed) laser welding on the metallic glass (MG) ribbons of four
compositions: Fe78Si9B13, Zr65Cu15Ni10Al10, La55Ni20Al25 and Ce65Al10Cu20Co5. All MGs can be welded in the air
by the ns-pulsed laser, and the crystallization of the welding joints can be avoided by proper control of the laser
parameters. By varying the travel speed, pulse duration and repetition frequency, the critical crystallization time
of MG can be quickly detected in a high-throughput way by ns-pulsed laser welding. At the optimal processing
conditions, 70–90% of the tensile strength of the parent melt-spun ribbon can be preserved in the welded MG
ribbons. The mechanical strength is well linked to the profile of the welding joint, which suggests a simple
method to evaluate the welding quality. A welding parameter map has been established based on the experi-
ments, and it is concluded that the laser power-density per sample thickness and the interaction time are the key
factors that control the crystallization and strength of the welding joints. The map is valid for a broad range of
MG compositions of all sample thickness, and thus the optimal processing conditions may be extended to all MGs
with equivalent glass-forming ability.

1. Introduction

Metallic glass (MG) welding remains a great challenge as it requires
not only to join MG parts together but also to avoid crystallization and
to maintain strength of the welding joints. Metallic liquids can easily
form crystals when they are in the supercooled liquid region. Even with
some best glass-forming compositions, the minimal time for crystal-
lization is just several tens of milliseconds [1–5]. Crystallization is a
serious problem as it induces embrittlement and weakens the overall
strength. Over the last two decades, many joining techniques have been
used to weld MGs, including friction [6–14], friction stir spot [15–21],
spark [22], ultrasonic [23–25], explosion [26–28], electron-beam
[29–36], magnetic [37] and laser welding [38–50]. Among lots of
candidates, laser welding attracts great attention due to its high pre-
cision, fast speed, high energy-density and low cost [43,51]. Further-
more, the pulsed laser is better than the continuous wave laser because
it shortens the interaction time at the high temperature, reducing the
risk of crystallization. Using millisecond-pulsed (ms-pulsed) lasers, one-
millimeter thick MG plates can be joined [38–50], but the simultaneous
crystallization always remains problematic. The difficulty has to be
overcome either by using limited good glass formers [41] or by placing
a cooling apparatus underneath the specimen [44]. Furthermore, the
ms-pulsed lasers used for welding above 1 mm plates, are not suitable to

thin ribbons because they often render excessive penetration. In com-
parison, ns-pulsed laser may be a better choice for MG ribbon welding
because it has shorter pulse duration and smaller power-density.

Many welding parameters, e.g. the laser power, pulse duration and
repetition frequency, travel speed of the laser head, can influence the
quality of the welding joint, so finding the optimal control parameters
for different materials is undoubtedly preferred. In addition, the
welding profile reflects the quality of the welding joint, so an ex-
amination of the welding profile helps to amend the welding condi-
tions. Besides, adjacent to the welded pool, the heat-affected zone
(HAZ) is often the birthplace of crystallization, so specific care is re-
quired to make an accurate observation on the HAZs.

Nanosecond-pulsed lasers (ns-pulsed lasers) are enabled by using
the Q-switching technique, where the population inversion can be
quickly built up to a high level and rapidly deplete up when laser action
terminates [52,53]. The ns-pulsed laser has been used to study how
irradiation affects MGs but not paid much attention to its potential
application on welding. In this work, we apply a ytterbium-doped op-
tical-fiber ns-pulsed laser to lap- or butt- weld MG ribbons. Through ns-
pulsed laser welding, both of the amorphicity and fracture strength are
kept, proving that ns-pulsed laser can replace ms-pulsed laser for MG
welding.
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2. Materials and methods

The Fe78Si9B13, Zr65Cu15Ni10Al10, La55Ni20Al25 and
Ce65Al10Cu20Co5 MG compositions were selected. Master alloys were
prepared by arc-melting the high purity elements, including Ce
(99.5%), Al (99.99%), Cu (99.9%), Co (99.99%), Zr (99.9%), Ni
(99.9%) and La (99.5%), under a Ti-gettered argon atmosphere.
Ribbons with a thickness of 30–60 μm were prepared by melt spinning
the molten liquid at 1100 K onto a copper wheel at a rotation speed of
40 r/min in an argon atmosphere. The Fe78Si9B13 ribbon, 25 μm thick
and 30 mm wide, was supplied by the Advanced Technology and
Materials Co., Ltd., of Central Iron and Steel Research Institute. A ns-
pulsed optical-fiber laser (Shenzhen JPT OPTO Electronics CO., LTD.)
was used for welding with a laser wavelength of 1064 nm, an output
power of 20 W, and a focused beam diameter of 50 μm.

The lap- and butt- welding were studied. For lap welding, one end of
the ribbon was placed on top of the end of another ribbon; for butt
welding, welding was done on one ribbon [Fig. 1(a)]. A 1 mm-thick
quartz-glass slide with a transmittance of 0.83 was placed on top of the
ribbons in welding. Positive defocus condition, where the focus of the
laser was set above the sample position, was maintained throughout the
experiments. The pulse duration (τ), travel speed (v) and repetition
frequency (f) were set at 4 or 6 ns, 160 or 162 mm/s and 205 or
210 kHz, respectively. Various defocus length (fd = 1.0–5.0 mm), and
power factor (p = 30%−70%) were studied. The output laser power P
is 20 W. The diameter of spot size (D= 0.0535–0.1087 mm) of the laser
was directly measured under Long-depth-field Microscope (LDFM, Leica

IC90 E). The power density, ρ, is evaluated by [54]

=ρ Pp πD4 / 2 (1)

The total interaction time between laser beam and MGs, t, is esti-
mated by

=t Dfτ v/ (2)

Room-temperature uniaxial tensile tests were performed by a de-
formation device system (Kammrath Weiss GmbH DDS-3) at a strain
rate of 1×10−4 s−1. Typical ribbon-length in tension was 28 mm where
the welding joint was placed right in the middle. The amorphicity was
checked by a lab X-ray diffractor (XRD, Bruker D8A A25) using Cu-Kα
radiation (wavelength of 1.5418 Å), and reassured by synchrotron x-ray
scattering measured at station 11-ID-C of the Advanced Photon Source,
Argonne National Laboratory, using a 105.7 keV X-ray with a beam size
of 500 µm×500 µm in transmission geometry at ambient conditions.
Welded ribbons, with a typical thickness of 50–100 µm at the welding
joint, are examined. Long-depth-field Microscope (LDFM, Leica IC90 E)
was used to check the macro-morphology and SEM was applied to study
the welding joints.

3. Results and discussion

By ns-pulsed laser welding, the MG ribbons were successfully
welded into different shapes. For example, the Fe78Si9B13 MG ribbons
were welded into a bracelet and a “Mobius band” [Fig. 1(b)]; the
welded bracelets can have different diameters [Fig. 1(c)]. Similar to
that of the crystalline materials, the welding joints of the MGs consist of
two parts, i.e. the fusion zone (FZ) and the heat-affected zone (HAZ)
[Fig. 1(d)]. The size of FZ and HAZ are measured from both sides of the
ribbon welding-joint. Fig. 1(e) schematically presents the welding joint
from the side view, where the upside and downside are marked by U
and D, respectively. Because the ribbons are very thin, the boundaries
of both FZ and HAZ in side view are assumed straight.

After welding, the structural state of the welding joint was char-
acterized by X-ray. The FZs and HAZs of the whole welding joints, on
both U and D sides and along the welding direction, are all character-
ized, where only amorphous halos are detected, suggesting that the
materials are not crystallized after welding [Fig. 2(a)]. In fact, fast
determination of the maximum t can be performed by high-throughput
laser scanning. Because t is altered by v, f and τ [Eq. (2)], a series of
lines, corresponding to different ts, are first laser welded on the same
MG ribbon and then checked under lab X-ray diffraction. Fig. 2(b)
presents the structural check of the Ce-, La-, Zr-, Fe-based MGs at ρ of
2.0–5.1×105 W mm−2 where the maximum t to maintain amorphicity
can be easily obtained from the amorphous/crystalline boundary. For
example, at ρ = 3.0±1.0×105 W mm−2, the maximum t to maintain
amorphicity for the Ce-, La-, Zr-, Fe-based MGs, as presented in the inset
of Fig. 2(b), are 0.20, 0.25, 0.26, 0.38 μs, respectively.

The effect of the defocus length (fd) is tested by lap welding the
Ce65Al10Cu20Co5 MG ribbons at a constant p of 70%. Fig. 3(a) exhibits
the side, top and bottom views of the welding joints at fd of 1.0, 2.5 and
5.0 mm, respectively. At fd of 1.0 mm, welding fails as the welding joint
breaks because of the excessive heating. At fd of 2.5 mm, the FZ is a
symmetric trapezoid where the U-FZ is slightly larger than the D-FZ. At
fd of 5.0 mm, the FZ trapezoid has a U-FZ much larger than its D-FZ. On
the other hand, the U-HAZ almost equals the D-HAZ at fd of 2.5 mm, but
the U-HAZ is smaller than the D-HAZ at fd of 5.0 mm [Fig. 3(b)]. The
typical sizes of the FZ and HAZ at fd of 2.5 mm are 260± 10 μm and
190± 10 μm, respectively. For the mechanical property, the fracture
strength (σ) can be as high as 70% of that of the parent MG at
fd = 2.5–4 mm [Fig. 3(c)]. In contrast, when fd is smaller than 2.5 mm
or larger than 4 mm, the fracture strength is reduced. Taking
fd = 2.5–4 mm as the optimal condition for laser welding, the corre-
sponding power density (ρ), calculated from Eq. (1), is at 1−4 kW/
mm2.

Fig. 1. The MG nanosecond-pulsed laser welding. (a) The schematic of the lap/
butt-welding. (b) Ribbons are welded into a bracelet and a “Mobius band”. (c)
Welded bracelets with different diameters (WJ: welding joint). (d) Top view of
a welding joint examined by LDFM (top part) and SEM (bottom part). (FZ:
fusion zone; HAZ: heat-affected zone). (e) Side view of a welding joint. (U:
upside; D: downside).
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The influence of the power factor (p) is tested during butt welding
process of the Ce65Al10Cu20Co5 MG ribbons, where the fd is fixed at
2.5 mm, corresponding to a D of 0.0684 mm. At p = 30%, only FZ yet
no obvious HAZ can be detected [Fig. 3(d)]. At p = 50% and 68%, the
profiles of the welding joints [Fig. 3(e)] appear similar to that of
fd = 2.5 mm [Fig. 3(a)], and the HAZ to FZ ratios are in the range of
40%−70%. Meanwhile, there is also a p-dependence of the σ, and the
maximum σ can be as high as 90% of that of the as-cast at p = 50%
[Fig. 3(f)]. Taking p=40%−50% as the optimal condition for welding,
the corresponding ρ, calculated by Eq. (1), is at 0.7−1.6 kW/mm2.

The present paper points out that the interaction time and the power
density are the two main factors that influence the quality of the
welding MG ribbons. Because most of the good glass formers of MGs
will start crystallization in milliseconds at the crystallization tempera-
tures [3], it is important and necessary to use ms- or ns-pulsed lasers for
welding. By adjusting the v, f and τ, t can be controlled [Eq. (2)] within
the “safe range” in the sense that crystallization can be avoided. It is
then important to control the ρ of the laser to generate a nice profile of
the welding joint so that the strength of the material can be maintained
as much as possible.

The profile of the welding joint can be considered as the first eva-
luation of welding quality because the profile is closely linked to the
fracture strength (Fig. 3). From our observation, a good profile should
be a symmetric trapezoid with its U-FZ close to its D-FZ and a HAZ/FZ
ratio within the range of 40%–70%. In contrast, bad profiles with either
U-FZ much larger than D-FZ or the HAZ/FZ ratio is out of the range of
40%–70% are related to weaker joining. Because one can easily

measure the profiles of the welding joints under an optical microscope,
the simple geometrical “criterion” can be used for primary estimation.

The success of welding is also connected to the proper selection of
power density (ρ). The ρ is adjusted by either D or p [Eq. (1)]. When ρ is
low, the ribbons are not welded through; when ρ is high, the ribbons are
welded too much, reaching a condition called excessive penetration. In
both cases, welding leads to low tensile strength. The fracture strength
reaches a maximum at the optimal ρ. However, there is an apparent
difference in the optimal condition between the lap and butt welding.
This is because the sample thicknesses (hs) are different for lap and butt
welding: h doubles in lap welding because two ends of the ribbons are
lapped. It is then important to use ρ/h rather than ρ itself to select the
optimal ρ for MG ribbon welding. For lap welding, ρ/h is 12–51 kW/
mm3; for butt welding, ρ/h is 11–26 kW/mm3. Results show that the
optimal ρ/h for MG welding agree well for lap and butt welding.

Fig. 4 summarizes the ρ/h and t of MG ribbon- and plate- welding. It
is clear that welding succeeds when ρ/h is at the order magnitude of
104–105 W/mm3 as confirmed by both of our tests and literature. Note
the optimal ρ/h is not limited to sample thickness, it works for both µm
or mm thick MG specimen and might also be valid for MG of other hs
like 100 nm MG thin films. Furthermore, if it is necessary to avoid
crystallization, the ms-pulsed laser may only work for those MGs that
are best glass formers, whereas ns-pulsed laser can be applied for more
MGs with good glass-forming ability. As can be seen from Fig. 4, the
total interaction time of the applied ns-pulsed laser is orders magnitude
shorter than the boundary between the amorphous and the crystallized,
leaving sufficient time for welding. The ns-pulsed laser then outweighs
the ms-pulsed laser.

4. Conclusions

In summary, the present study demonstrates that metallic glass
ribbons can be easily welded by nanosecond-pulsed laser. Through laser
welding, origami or curvatures made by the MG thin ribbons can be
preserved. The results also prove that ns-pulsed laser can weld MG
ribbons in the air without crystallization, and the critical crystallization
time can be quickly determined in a high-throughput way. The me-
chanical strength can be kept up to 70%–90% of the as-prepared rib-
bons at the optimal conditions of the defocus length and power factor. A
welding processing map has been established which suggests that the
optimal laser power-density per sample thickness is at the 104–105 W/
mm3.

See supplementary material for the complete welding parameters
(Table S1).
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