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Despite the importance of Poisson's ratio in materials science and engineering, its connection to molecular dy-
namics and relaxation processes in glass-forming systems remains unclear. The existence of such connection
made the family of metallic glasses in our previous study [K.L. Ngai et al. J. Chem. Phys. 140 (2014) 044511],
where it was also justified bymolecular dynamics simulation, physics of glass-formingmaterials, and theoretical
considerations. Here we extend the consideration to molecular glass-formers and amorphous polymers, and
demonstrate that the Poisson's ratio correlates with several microscopic dynamic properties, and explained the-
oretically in exactly the same way as given in our previous publication.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The dynamics ofmolecular liquids and the relation to glass transition
are still unsolved problems in condensedmatter physics. Despite the in-
tensive research in the past decades by various experimental techniques
and theoretical approaches, there is still no consensus on the key issue,
i.e. the fundamental physics that govern the dynamics and explain the
salient experimental facts. In this state of affair, the search of strong cor-
relations between different aspects or properties of the dynamics is a
worthwhile undertaking. Success in establishing such strong correla-
tions can provide deeper insight into the problem, and clues for possible
breakthrough in solving the problem.

There are many outstanding aspects of the dynamics of glass-
formingmolecular liquids found all over the spectrum fromTHzphonon
frequencies down to 10−6 Hz by quasielastic neutron scattering and dy-
namic light scattering, nuclear magnetic resonance, dielectric and me-
chanical relaxation and other techniques. Examples include (1) the
intensity of the Boson peak measured by the ratio between the maxi-
mum and the minimum of the peak in the Raman- and neutron-
scattering spectra [1]; (2) the degree of non-exponentiality of the corre-
lation function of the structuralα-relaxation, or the fractional exponent
of the Kohlrausch stretched exponential function that fits it, at the
glass transition temperature Tg [2]; (3) the steepness indexm or fragility
characterizing the rapidity of the increase in the structuralα-relaxation
time, τα(T), on lowering temperature to approach Tg from the
supercooled liquid side [3,4]; (4) the mean squared displacement,
to di Fisica, Università di Pisa,
br2(T)N, measured by quasielastic neutron scattering in the glassy
state, as well as at Tg and above Tg in the liquid state [5,6]; (5) the effec-
tive Debye–Waller factor (i.e., the non-ergodicity parameter), f0 [7–10],
(6) the ratio, τα(Tg)/τβ(Tg), where τβ(Tg) is the relaxation time of a sec-
ondary relaxation belonging to a special class referred to as the Johari–
Goldstein β-relaxation [11,12]; and (7) the Poisson's ratio ν [13–22], or
K/G, the ratio of the elastic bulk modulus K to the shear modulus G.

While the first six items in the above are associated with one prop-
erty to the other of themolecular dynamics (obtainable by spectroscopy
in the time or frequency domain), the last item on the Poisson's ratio is
an exception because it is from an elastic property of a material when
compressed in one direction that it tends to expand in the two other di-
rections The Poisson's ratio ν is defined as the ratio between the fraction
of expansion divided by the fraction of compression. If the material is
stretched instead of compressed, the Poisson's ratio is the ratio of the
relative contraction to relative stretching, the same value as for com-
pression. For isotropic material, the Poisson's ratio is related to other
elastic constants K and G by [19–21]

ν ¼ 3K−2Gð Þ=2 3K þ Gð Þ: ð1Þ

Since K and G are positive numbers, the Poisson's ratio can vary be-
tween−1 (if K = 0) and 0.5 (if G = 0). The Poisson's ratio ν is an im-
portant parameter for elastic properties of materials and shown to
critical for other macroscopic properties of materials of different kinds
including glass-formers [19–21]. It is intriguing as a macroscopic pa-
rameter that it can bear relation or correlation at all to any of themicro-
scopic molecular dynamic properties. Nonetheless, via its connection to
the longitudinal soundwaves governed by the longitudinalmodulus,M,
a relation has been found between ν and the effective Debye–Waller
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factor [14], which is the plateau of time-dependent density–density cor-
relation function F(Q,t) normalized by the static structure factor S(Q) in
the long wavelength limit, i.e. Q→ 0. The plateau appears at times lon-
ger than the vibration times but shorter than the secondaryβ-relaxation
and theα-relaxation time. The height of the plateau, f0(T), is also known
as the nonergodicity parameter in the context of Mode Coupling Theory
(MCT) [23], but we shall continue referring to it as the effectively the
Debye–Waller factor because no connection is made with MCT in this
paper. The quantity, 1 − f0(T), represents the decorrelation introduced
by the vibrational dynamics, and it gives the part of the density fluctua-
tions that is frozen deep in the glassy state. It also characterizes the com-
bined amplitude of the β- and α-processes.

From the relation of the longitudinal soundwaves to the longwave-
length limit of the dynamical structure factor, it has been shown [23,24]
that

f 0 ¼ 1−M0=M∞ ð2Þ

whereM0 andM∞ are the zero and infinite frequency longitudinal mod-
ulus respectively. Using the identity,M ¼ K þ 4

3

� �
G, the expression for f0

can be rewritten as

f 0 ¼ 1− K0 þ 4=3ð ÞG0½ �= K∞ þ 4=3ð ÞG∞½ �: ð3Þ

In Ref. [14], the approximation was made in the glassy state by put-
ting the zero frequency shear modulus G0 = 0, and neglecting the soft-
ening of the bulkmodulus on decreasing frequency, i.e., putting K0 ≅ K∞.
The final result on the relation between f0 and K∞/G∞ is given by [14,25]

f 0 ¼ 1
3
4

K∞
G∞

� �
þ 1

: ð4Þ

Thus, glass-former with larger K∞/G∞ has a smaller effective Debye–
Waller factor f0. In other words, K∞/G∞ correlates with 1/f0 or (1 − f0).
Eq. (4) in conjunction with the exact relation,

v ¼ 1
2
− 3

6K∞=G∞ þ 2
; ð5Þ

leads to the correlation of the Poisson's ratio νwith 1/f0 and (1− f0), or
the anti correlation with f0. A plot of ν against (1− f0) to show the cor-
relation quantitatively is given in Fig. 1.

Despite of the fact that the correlation of νwith 1/f0, or (1− f0) can
be derived formally, the connection of the Poisson's ratio molecular dy-
namics of glass-forming liquids is limited. This is because the derivation
of Eq. (4) linking the effective Debye–Waller factor, f0, to the elastic
Fig. 1. Plot of Poisson's ratio against (1− f0).
constants involves the longitudinal sound waves but none of the relax-
ation dynamics of the glass-forming liquid or glass. Therefore, insight of
the connection of Poisson's ratio to molecular dynamics gained by
Eqs. (4) and (5) is limited. Unclear is the question of whether and
how the Poisson's ratio is related to the structural α-relaxation, which
is central to the problem of glass transition. Advance was made in a re-
cent paper [25]where a connectionwasmade between (1− f0) and the
breadth of the time/frequency dispersion of theα-relaxation. The latter
is proportional to the degree of non-exponentiality of the α-relaxation
correlation function represented by n appearing in the fractional expo-
nent, 1 − n, of the Kohlrausch stretched exponential function,

ϕ tð Þ ¼ exp − t=ταð Þ1−n
h i

: ð6Þ

commonly used to fit the correlation function. Results from molecular
dynamics simulations [26,27], quasielastic neutron and dynamic light
scattering, and dielectric relaxation [25] together with the interpreta-
tions by the Coupling Model [28–31] were employed in establishing
the correlation between (1 − f0) and n [25]. Also shown is that both
quantities, f0 and n, ultimately are determined by the anharmonicity
of the inter-molecular potential, which governs the dynamics at
all times ranging from vibrations including the Boson peak, the dissipa-
tion of cagedmolecules related to f0 at short times, and Johari–Goldstein
β-relaxation [11,12,32] at intermediate times, and the terminal α-
relaxation at long times. On combining the two correlations, (1 − f0)
with n, and ν with (1 − f0), we are able to reach the connection that
the Poisson's ratio is having with the fundamental physics governing
the structural α-relaxation and glass transition.

In applying these predictions to real glass-formers, the previous
work [25] is totally focused on the family of metallic glasses. Although
by and large the predictions have been verified in the special class of
metallic glasses, naturally the task needed to follow up is to test if
they hold also for glass-formers of other classes. This step is critical be-
cause most known glass-forming liquids are not metallic. The present
paper reports the results of such an investigation.

The paper is organized as follows.We first briefly summarize the rel-
evant molecular dynamics simulations results, the quasielastic neutron
scattering data, and the theoretical basis and predictions of the Coupling
Model, all of which have led to the correlation between (1− f0) and n as
well as the fundamental connection to anharmonicity of the potential.
Application of the prediction to other glass-formers constituting the
central part of the paper is presented next, and followed by discussion
and conclusion. The correlation of the Poisson's ratio to molecular dy-
namic properties of glass-forming materials had been rationalized and
explained theoretically by fundamental physics governing the structur-
al α-relaxation in the previous publication [25], where the focus is on
metallic glasses. Nevertheless, the same theoretical considerations
apply verbatim to themolecular and polymeric glass-formers discussed
in this paper. There is no need to duplicate it here because readers inter-
ested in the theoretical justification can consult Ref. [25].

2. Connecting f0 to anharmonicity of potential and the coupling
parameter n

In our previous publication [25], wemade use of results frommolec-
ular dynamics simulations, various experiments, and the Coupling
Model (CM) [28–31] to establish connection between f0 and the relaxa-
tion processes in glass-forming liquids. Amore fundamental connection
was ultimately established between all quantities and parameters, in-
cluding f0, and the anharmonicity of the inter-molecular potential. On
combining with the correlation between f0 and ν shown in Fig. 1, the
goal of linking the Poisson's ratio to molecular dynamics and glass tran-
sition is accomplished. In order to ensure that the paper is self contained
and readable without having to go back to the previous work, we give



Fig. 2. Plot of f0(Tg) against the non-exponentiality or coupling parameter n. The data of
f0(Tg) are deduced from Refs. [7–10] as described in the text. The n values are obtained
from Refs. [5,6,31].

Fig. 3. Plot of f0(Tg) against the non-exponentiality or coupling parameter n. The data of
f0(Tg) are deduced from Refs. [7,10] as described in the text. The n values are obtained
from Refs. [5,6,31].
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an abbreviated version of the essential connections or correlations be-
fore testing them for glass-formers that are not metallic glasses.

2.1. Correlation of (1− f0) with n

Molecular dynamics simulations of binary Lennard–Jones (LJ) sys-
tems by Bordat et al. [26,27] inwhich the potential, V(r), was varied sys-
tematically to increase its anharmonicity. To compare the dynamics,
temperature in each case is scaled by Tref at which τα is equal to an arbi-
trarily chosen long time. For all T/Tref, increasing anharmonicity of
the interparticle potential is accompanied by (i) increasing non-
exponentiality of the α-relaxation or the coupling parameter n(T/Tref)
of the CM, (ii) decreasing effective Debye–Waller factor f(Q0, T/Tref) or
equivalently increasing value of (1− f0), and (iii) increasing steepness
index or fragility parameter, m. Thus, correlations were established be-
tween four quantities, anharmonicity of potential, n, 1/f(Q0,T), andm, in
the supercooled liquid state. In the glassy state, the results of the
simulations again show f(Q → 0, T/Tref,) ≡ f0(T/Tref) anti-correlates
with anharmonicity, and is able to reproduce the correlation found
by Scopigno and coworkers [7,10]. Hence, we have in the glassy state
as well the correlations between anharmonicity, n, 1/f0(T/Tref) or (1 −
f0), and m. Applying the simulation results to real glass-formers, Tref
can be taken as the glass transition temperature Tg. The increase of n
with anharmonicity of the interparticle potential found by simulations
is consistent with the CM based on nonlinear Hamiltonian dynamics
(i.e., classical chaos) of systemsgoverned by anharmonic interaction po-
tential. Exact solutions of simplified model systems have demonstrated
the increase of n with anharmonicity or nonlinearity of the potential
[29–31].

Molecular dynamics simulations of the binary L–J particles with dif-
ferent potentials provide the best evidence of existence of correlation of
(1 − f0) with n. Notwithstanding, it is necessary to see if such correla-
tion holds for real glass-formers. For this purpose, we obtain f0(Tg) at
T = Tg from the its temperature dependence in the glass state,

f 0 Tð Þ ¼ 1

1þ α
T
Tg

 ! ; ð7Þ

determined by means of inelastic X-ray scattering [7,11] and other
means [8,9], and using the published values of α. Lesson has been
learned before [2] in demonstrating correlations of properties that it is
better not to mix glass-formers of different classes. This is because
glass-formers of widely different chemical and physical structures
have dissimilar intermolecular potentials, which can contribute varia-
tions beyond the correlation sought after. Therefore we consider the
data of f0(Tg) from amorphous polymers separately. The rest are inor-
ganic and organic glass-formers. Despite not from the same class, we
consider all of them together in Fig. 2 because of limited number of
data of f0(Tg) available if we further sort them out into different classes.
Plotting f0(Tg) against n(Tg) in Figs. 2 and 3 for the non-polymeric glass-
formers and polymers respectively, existence of anti-correlation be-
tween f0(Tg) and n(Tg), or correlation between (1 − f0(Tg)) and n(Tg),
has support from the experimental data.

From Eqs. (4) and (5) we can see that the Poisson's ratio ν anti-
correlates with f0(Tg), or ν correlates between (1 − f0(Tg)). Thus, on
combining the latter as shown quantitatively in Fig. 1 with the experi-
mentally supported correlation between (1 − f0(Tg)) and n(Tg) in
Figs. 2 and 3, we arrive at the important result that the Poisson's ratio
ν is connected to n and through n the dynamics of the glass-former.
Moreover, since n is determined by the potential, so is the Poisson's
ratio related to the potential.

It would be nice to show the correlation between ν and (1− f0(Tg))
by experimental data. However, very few glass-formers have bothν and
(1 − f0(Tg)) been measured. Despite it is most interesting to verify
directly the relation of ν to (1 − f0(Tg)) by real data, we have to wait
for measurements in the future. There is only the GexSe1 − x systems
of several compositions (x = 0.0, 0.10, 0.15, and 0.25) in which both ν
at room temperature in the glassy state [19] and n(Tg) are available
from experiments [33]. The average coordination number brN of
GexSe1 − x is computed from the formula brN = 4x + 2(1 − x). The
plot of ν against n(Tg) in Fig. 4 shows presence of the strong correlation
on restricting the glass-formers within the same family.

2.2. Correlation of the mean-square-displacement, bu2N, with n and ν at Tg

From quasielastic neutron scattering experiment at wavevector Q,
the Debye–Waller factor of the glass-former is given in terms of the
mean square displacement (MSD), bu2N, by [3,34,35]

f 0 ¼ exp −bu2
NQ2

=3
h i

: ð8Þ

Hence, by this relation, another way to obtain f0 is from bu2N. More
than ten years ago, the data of bu2N fromdifferent glass-formers studied
by quasielastic neutron scattering were collected and compared,
resulting in the establishment of a correlation between n and bu2N
[35]. Since different glass-formers have different Tg, comparison of
bu2N is made after temperature has been scaled by Tg. Glass-former
with larger n has a larger bu2(T/Tg)N at the same value of T/Tg ≤ 1



Fig. 4. Plot of Poisson's ratio against the non-exponentiality or coupling parameter n for
the GexSe1 − x glasses.

Fig. 6. Plot of mean-square-displacement, bu2(T/Tg)N versus T/Tg for polystyrene (PS) and
1,4 polybutadiene (1,4 PBD). The inset shows the observance of the anticorrelation be-
tween the Poisson's ratio and f0(Tg).
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including T/Tg=1. It increasesmore rapidly as a function of T/Tg. The Tg-
scaled temperature dependence of bu2(T/Tg)N changes on crossing Tg to
become stronger. The change is alsomoremarked for glass-formerwith
larger n. We show as examples the comparison between ortho-
terphenyl (n(Tg) = 0.50), and glycerol (n(Tg) = 0.30–0.35) of their
bu2(T/Tg)N in Fig. 5, and the comparison of PS (n(Tg) = 0.65) versus
1,4 PBD (n(Tg) = 0.50) in Fig. 6. The insets in each figure show the
glass-former with larger bu2(T/Tg)N and n(Tg), has larger Poisson's
ratio ν. It would be nice to showmore examples like in Figs. 5 and 6. Un-
fortunately, there are very few glass-formers that have all three quanti-
ties, bu2(T/Tg)N, n(Tg), and ν, determined by experiments. Furthermore,
the MSD bu2(T/Tg)N depends on the energy resolution of the neutron
scattering spectrometer. In Fig. 5, the data were obtained with spec-
trometer with higher energy resolution to include fast processes with
frequencies higher than 0.24 GHz, while lower energy resolution in
Fig. 6 includes processes higher than 48 GHz [35]. Hence meaningful
comparison of bu2(T/Tg)N between different glass-formers can be
made if the data are takenwith the same energy resolution. This further
restricts the number of cases we can consider.

There are a few glass-formers for which the Poisson's ratio ν
has been measured as a function of temperature below and above
Tg [19,20], and at the same time the microscopic dynamic pa-
rameters, bu2(T/Tg)N and n(Tg), are also available. This gives us an
opportunity to correlate the Tg-scaled temperature dependence
of ν with bu2(T/Tg)N and n(Tg) in Fig. 7 even though the number of
glass-formers is limited. In this figure, ν(T/Tg) of PS (T/Tg = 373 K), Se
Fig. 5. Plot of mean-square-displacement, bu2(T/Tg)N versus T/Tg for OTP and glycerol. The
inset shows the observance of the anticorrelation between the Poisson's ratio and f0(Tg).
(T/Tg = 313 K), glycerol (T/Tg = 186 K), and B2O3 (T/Tg = 541 K)
taken from Ref. [19] can be compared with their bu2(T/Tg)N shown in
the inset. For Se, there is only a single data point of ν(T/Tg) taken at
T = 293 K and is shown at T/Tg = 1.07. For amorphous water (Tg =
136 K), there is no data of b u2(T/Tg) N available to present in the
inset. By inspection, the magnitudes as well as the Tg-scaled tempera-
ture dependence of ν(T/Tg) and bu2(T/Tg)N of PS, Se, glycerol and B2O3

correlate quite well. In addition, the magnitude of both quantities as
well as the steepness of the rise on crossing Tg to the ‘liquid’ state corre-
late also with n(Tg), 0.65 for PS, 0.58 for Se, 0.35–0.30 for glycerol, 0.40
for B2O3, and close to zero value for amorphous water [36]. Since
the steepness or fragility index m has the values of 139, 87, 53, and
32 respectively for PS, Se, glycerol, and B2O3, it also correlates with
bu2(T/Tg)N, n(Tg), and especially ν(T/Tg), the focus of this paper.

3. Discussion and conclusion

The Poisson's ratio ν has a long history in materials science and en-
gineering in providing an important measure of the elastic performance
of any material under mechanical strain. In recent years, it has been
linked to other properties beyond elasticity such as ductility and plastic-
ity of materials, and others summarized in reviews [19,20,37]. These
broad range developments indicate that somehow ν has connection to
the microscopic molecular dynamics and relaxation processes. One
way to demonstrate the existence of the connection is to derive from
Fig. 7. Plotting against T/Tg the Poisson's ratio, ν(T/Tg), in themain figure, and bu2(T/Tg)N in
the inset. For ν(T/Tg) data are available only for PS, glycerol, B2O3, and H2O, the single blue
star is the Poisson's ratio of Se at 297 K. All are taken from Ref. [19]. The inset shows the
data of PS, Se, glycerol, and B2O3 taken from Ref. [3].
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theoretical consideration a relation between ν and somedynamic quan-
tity. In fact there is a relation between ν and the effective Debye–Waller
factor, f0, given by Eqs. (4) and (5) combined, and plotted out in Fig. 1.
Notwithstanding, f0 is related to vibrational properties, and the relation
of the Poisson's ratio tomolecular dynamics and relaxation is still not in
hand. To reach this goal we have utilized the results frommolecular dy-
namics simulations and the precept of the Coupling Model to establish
the relation between f0 and the non-exponentiality or coupling param-
eter, n, of the structural α-relaxation. Ultimately it is the anharmonicity
of the intermolecular potential that determines both f0 and n, and hence
their relation. By stringing together the two relations, ν with f0 and f0
with the structural α-relaxation, we have obtained a connection be-
tween ν and microscopic dynamics. In support of this result, experi-
mental data of f0, n, and ν from many glass-forming liquids are
collected together to show that there is a correlation. Mean square dis-
placement bu2N obtained from quasielastic neutron scattering experi-
ments is related to f0, and there is also a correlation of bu2N with ν
and n, as well as with fragility indexm. In order to establish the correla-
tions, we need ν, f0, bu2N, n, andm, all determined for each of the glass-
formers. There are not many glass-formers satisfying this requirement,
and more are needed in the future to confirm these correlations. With
the caveat that it is based on the data available so far, the conclusion
we make is that the goal of relating the Poisson's ratio to microscopic
dynamics of glass-formers has been achieved.
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