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We report the observation of spiral fracture of the metallic glass Zr41Ti14Cu12.5Ni10Be22.5 (at.%) subjected
to both shear and normal stresses. The spiral angle (that between the spiral line and the loading axis)
increases as we gradually change the normal stress from tensile (positive) to compressive (negative).
The spiral nature of the fractured surface leads to a left-handed helix fractography pattern in tension,
and a right-handed helix in compression. The Mohr–Coulomb type of failure is essential for the unique
spiral fracture. The use of spiral angles resulted from torsion–tension experiments provide another novel
experimental strategy to examine the failure criterion as well as stress state dependence of deformation
mechanisms which lead to failure in metallic glasses.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The pressure sensitivity of failure in metallic glasses has been a
topic of active research since the early experimental work of Davis
and Kavesh [1] on ribbons, and more recent work by a number of
authors [1–7]. This topic is tied to understanding the fundamental
aspects of plastic deformation mechanisms which are still not fully
understood [2,8]. Experimentally, the pressure sensitivity of failure
can be directly examined by conducting experiments with super-
imposed hydrostatic pressure [1,3–7] in the manner of Bridgman
[9], while any tension/compression asymmetry that exists at one
atmosphere may also indicate some pressure sensitivity. For exam-
ple, tension and compression tests conducted at one atmosphere
by Donovan [10] found that the failure strength of Pd40Ni40P20 fol-
lowed the Mohr–Coulomb failure (M–C) criterion. Various works
by Lewandowski et al. [3–7] found only a moderate normal stress
or pressure sensitivity for tests conducted with superimposed
hydrostatic pressure when analyzed with either a M–C or
Drucker–Prager (D–P) criterion, despite relatively large changes
in fracture angle [3–5] going from tension to compression at atmo-
spheric pressure. This asymmetry in fracture angle was later
shown to be influenced by stress concentrations at the sam-
ple/platen interface that biased the compression fracture angles,
later rectified by the design of tapered grips [11,12]. Other recent
work by Lu and Ravichandran [13] utilized confined compression
tests on Zr41.2Ti13.8Cu12.5Ni10Be22.5 and found a more significant
effect of confinement, although frictional restraint of the confining
rings may have affected the magnitude of the pressure effect
reported. Earlier work [14] utilized tension, compression, and tor-
sion samples on a similar material and suggested that a von Mises
criterion (i.e. pressure independent) might be appropriate. All of
these previous works highlight the importance of continuing to
examine the effects of changes in stress state and loading mode,
as these have been observed to affect the deformation and fracture
toughness, as shown by others [15–17].

In addition to experimental characterization, computational
techniques were also employed to examine the validity of broadly
used strength criteria including the Mohr–Coulomb criteria,
Drucker–Prager criterion (D–P), and von Mises criterion. By using
atomistic simulations, Lund and Schuh in 2004 [18] found that a
pressure or normal stress dependence must be included in the fail-
ure criterion of metallic glasses, and they also suggested a range of
Mohr–Coulomb internal friction coefficient of a = 0.12–0.4 [19,20].
These atomistic simulations often produced much higher values
for the friction coefficient than what was obtained experimentally,
as well as what is found presently. Instrumented indentation and
finite element simulations have also been employed to examine
the pressure sensitivity of strength in BMGs [21–24] and they all
suggested that pressure sensitive M–C or D–P [25] were better sui-
ted to capture deformation in structures with complex stress state.
Finite-element modeling with embedded M–C criterion is able to
captured typical features seen from systematic experimental char-
acterizations of BMGs [26]. Later on simulations by Zhao and Li
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[27] showed that taking consideration free volume dilatation [28]
and the pressures sensitive D–P failure criterion are sufficient to
explain the tension–compression fracture asymmetry in BMGs.
Note that aforementioned experiments were typically performed
at room temperature or temperature far below their respective
glass transition temperatures of the tested materials. Recent work
by Thamburaja et al. [29], guided by a series of molecular dynamics
simulations conducted at low-homologous temperatures under
homogeneous deformations, quantitatively prove that the contin-
uum plastic behavior in metallic glasses could be described by
the von Mises-type plastic yield criterion in that particular.

It is now generally accepted that criteria taking pressure sensi-
tivity into account such as the M–C and the D–P are more appropri-
ate to describe the strength of BMGs than pressure-independent
ones like the Mises criterion when BMGs were tested at a temper-
ature far below their glass transition temperature. However,
regarding the exact formula to quantify the contribution of pressure
to failure in BMGs, it remains an open question. For example, Zhang
et al. suggested amodifiedM–C criterionwhere the internal friction
parameters are different in tension and compression surface stress
states [30]. Chen et al. [31] proposed an eccentric elliptical criterion
on the basis of atomistic potential analysis. Later on, Wei [32,33]
considered the different contributions of the distortional part and
the volumetric part in total strain energy density to failure, and
developed an energy based criterion where the shear strength
and the normal strength are considered as two independent mate-
rial parameters in BMGs. Recent experiments by Lei et al. [34]
indeed found that distinct shear strength and normal strength are
responsible for notch strengthening in BMGs: The tensile strength
of the net section in circumferentially notched cylindrical BMGs
increases with the constraint quantified by the ratio of notch depth
over notch root radius. In summary, substantial understanding has
been developed about the strength criterion of BMGs in the last two
decades. Quantitatively, existing data about the material parame-
ters of BMGs in different failure criteria are very scattered. There
are compelling needs to critically examine the applicability of dif-
ferent failure criteria and to explore novel experimental strategies
for calibration. In this work, we conducted combined torsion–
tension experiments on Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass
rods, and we further validated the applicability of Mohr–Coulomb
failure criterion on the tested metallic glasses from the spiral frac-
ture angle aspect. In contrast to the classic torsion–tension tests to a
polycrystalline thin-walled tube by Taylor and Quinney in 1931
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Fig. 1. Mechanical characterization of cylindrical metallic glass Zr41 Ti14Cu12.5Ni10Be22.
sample for normal loading-torsion tests (unit: mm). (c) Illustration of the loading: r0 – a
interest; m – an arbitrary material point at the outermost surface. (d) Projected view to s
the cross-section perpendicular to the normal direction; smax – the maximum shear stre
axial normal stress; and we reach a stiffness of 47.9 ± 2.0 Nm/rad based on all experimen
maximum shear strain cmax(cmax =HR/L) at a material point in outermost surface.
[35], the metallic glass could be better suited for failure analysis
because the onset of plastic flow in polycrystalline materials is very
likely to be influenced by preferred orientations of individual grains
[36].
2. Experimental

We use probably the most well investigated BMG
Zr41Ti14Cu12.5Ni10Be22.5 (at.%). It represents a substantial amount
of existing BMGs which offer almost no tensile ductility but exhibit
intermediate-to-high resistance to fracture. The material is made
in a water-cooled arc-melting hearth under a titanium-gathered
argon atmosphere. Elemental metals (>99.9% purity) are used to
form the master alloy and suction-casted into a £ 8� 100 mm
cylinders. Those cylinders are then lathed using carbide tool into
dog-bone samples with dimensions shown as Fig. 1a and b. The
gauged sections of the samples are then mirror-polished to smooth
the surface. A servo-hydraulic MTS 809 test system is used to do
the torsion–tension tests. We first exerted prescribed axial normal
load within 20 s. This loading condition corresponds to a strain rate
on the order of 10�3/s since Zr41Ti14Cu12.5Ni10Be22.5 breaks after an
elastic strain limit about 0.02. We then twist the samples to failure.
The torsion is applied at an angular velocity of 5�/min (correspond-
ing to a maximum shear strain rate of about 2.5 � 10�4/s). We also
conducted contrast experiments with torsion loaded first
(4 Nm/min, corresponding to a maximum shear strain rate about
1.2 � 10�5/s), then axial load next (0.2 mm/min, corresponding to
a strain rate about 2.5 � 10�4/s), to character the normal–shear
failure stresses combination’s dependence on loading path. The
range of the axial normal stress r0 (see Fig. 1c) for the tested sam-
ples is from r0 = 1.98 GPa (uniaxial tension) to r0 = �1.84 GPa, and
is listed in detail in Table 1.
3. Results and discussion

As a BMG sample (see layout and dimensions in Fig. 1a and b) is
subjected to mechanical twist while an exact axial load is applied,
any material point in the sample is subjected to two stress compo-
nents: the axial normal stress r0 and the shear stress (as illustrated
in Fig. 1c). The shear deformation along the radial direction in a
crossection perpendicular to the cylinder axis is linear in nature
(as seen in Fig. 1d), resulting in a linear variation in shear stress
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Table 1
Detailed experiment data about tension torsion of Zr41Ti14Cu12.5Ni10Be22.5 samples. The axial normal stress r0 and the maximum shear stress smax at failure, the torsion torque T
at failure, the torsion twist angleH at failure, the spiral fracture angle h + b, and sample size R-radius are shown. Data in rows with ‘‘*” come from contrast experiments in which
we apply torsion first, keep it constant at a target value, and then gradually increase the magnitude of normal axial stress till the sample fails.

No. r0 (GPa) smax (GPa) T (Nm) H (rad) h + b (�) 2R (mm) No. r0 (GPa) smax (GPa) T (Nm) H (rad) h + b (�) 2R (mm)

1 1.886 0.000 0.00 0.000 54.4 4.00 27 0.000 0.992 14.85 0.299 90.0 4.24
2 1.950 0.000 0.00 0.000 56.1 4.22 28 �0.166 1.012 14.72 0.274 93.5 4.20
3 1.980 0.000 0.00 0.000 58.0 4.29 29 �0.170 0.961 10.94 0.276 99.9 3.87
4* 1.977 0.120 1.67 0.033 50.0 4.16 30 �0.200 1.071 15.44 0.317 97.7 4.19
5* 1.884 0.334 4.85 0.100 70.0 4.20 31 �0.360 0.994 14.46 0.284 102.6 4.20
6* 1.852 0.353 5.07 0.100 68.5 4.18 32 �0.420 1.061 16.08 0.302 103.7 4.26
7 1.756 0.490 7.65 0.147 67.0 4.30 33 �0.420 1.048 15.81 0.304 106.4 4.25
8 1.668 0.467 7.23 0.142 67.0 4.28 34 �0.426 0.996 14.71 0.267 103.0 4.22
9 1.571 0.547 8.38 0.162 73.0 4.27 35 �0.480 1.001 15.64 0.278 102.7 4.30
10 1.530 0.565 8.11 0.170 69.0 4.18 36 �0.500 1.029 15.49 0.294 103.6 4.25
11 1.362 0.660 10.10 0.204 73.0 4.27 37 �0.560 1.030 15.52 0.296 102.8 4.25
12 1.281 0.772 11.48 0.252 78.7 4.23 38 �0.580 1.000 14.42 0.263 105.4 4.19
13 1.168 0.765 11.43 0.234 78.0 4.24 39 �0.729 0.926 13.22 0.239 109.0 4.18
14* 1.078 0.819 12.01 0.229 80.0 4.21 40 �0.740 0.877 8.80 0.278 103.6 3.73
15 1.070 0.854 12.61 0.270 77.7 4.22 41 �0.866 0.958 13.92 0.260 107.0 4.20
16 1.040 0.821 12.64 0.267 72.6 4.28 42 �1.006 0.879 12.88 0.239 110.5 4.21
17 0.956 0.837 12.55 0.264 75.8 4.24 43 �1.124 0.904 13.10 0.232 107.0 4.19
18 0.860 0.913 13.76 0.288 84.6 4.25 44 �1.245 0.878 12.48 0.224 107.1 4.17
19 0.733 0.888 13.57 0.273 87.1 4.27 45 �1.342 0.838 12.07 0.222 118.6 4.19
20 0.630 1.008 15.52 0.352 88.8 4.28 46 �1.485 0.769 10.70 0.191 121.0 4.14
21 0.531 0.931 13.91 0.279 82.6 4.24 47* �1.605 0.814 12.09 0.222 120.0 4.23
22 0.400 0.998 16.39 0.343 83.0 4.37 48 �1.660 0.770 11.48 0.204 120.8 4.24
23 0.323 0.955 13.99 0.278 90.4 4.21 49* �1.784 0.593 8.75 0.161 124.5 4.22
24* 0.287 1.006 15.05 0.285 80.0 4.24 50 �1.838 0.620 8.48 0.155 123.4 4.12
25 0.200 1.040 16.48 0.328 88.3 4.32 51* �1.848 0.456 6.64 0.134 125.5 4.20
26 0.000 1.068 14.18 0.284 95.2 4.07
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Fig. 2. The failure envelope of metallic glass Zr41 Ti14Cu12.5Ni10Be22.5 subjected to
both normal and shear stress. We plot the experimental data against predictions by
Mohr–Coulomb (M–C), Mises and Druck–Prager (D–P) failure criterion. An internal
friction coefficient of a = 0.058 ± 0.012 and a cohesion c = 1.026 ± 0.014 GPa are
used for the M–C criterion; the equivalent strength of rY = 1.857 ± 0.117 GPa is used
in the Mises criterion; and an internal friction coefficient of A = 1.066 ± 0.018 GPa
and B = �0.016 ± 0.008 are used in the D–P criterion. The D–P and M–C values are
consistent with Lewandowiski’s report [3] using superimposed method.
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along the radius. We show in Fig. 1e three typical torque-twisting
angle curves for an arbitrary material point in the outer-most
surface of the sample under different axial normal stress
r0 = �1.8 GPa (black), r0 = �0.4 GPa (blue) and r0 = 1.76 GPa
(purple), and we reach a stiffness of 47.9 ± 2.0 Nm/rad basing on
all the test samples (see listed in detail in Table 1); and we show
in Fig. 1f the three typical maximum shear stress versus its respect
maximum shear strain curves with respect to Fig. 1e. The failure
points supply information about the critical combination of shear
stress and normal stress which lead to failure.

A set of tension–torsion data are obtained as we gradually
change the pre-applied normal stress from tension to compression.
We show in Fig. 2 the critical combinations of maximum shear
stress smax and axial normal stress r0 which lead to failure in the
principal stress coordinate. Theoretical predictions by the M–C cri-
terion, the Mises criterion, and the D–P criterion, by using the least
square fittings, are also shown. For the metallic glass Zr41
Ti14Cu12.5Ni10Be22.5 tested here, the yielding point, where the
strength maximizes, is also where fracture occurs. There is no per-
ceivably macroscopic yielding before failure, as seen in the torque–
twist angle curves in Fig. 1e. We hence use the term ‘‘failure”
instead of ‘‘yielding” to describe the critical combinations of shear
and normal stress which trigger fracture in Zr41Ti14Cu12.5Ni10Be22.5.
It is noted that there could be possibilities when shear banding
does not lead to catastrophic failure, for example in bending tests
[37] and in indentation experiments [21–24]. In those states of
stress, ‘‘yielding” apparently differs from ‘‘failure”. In the M–C
criterion,

jsnj ¼ c � rn tan/ ð1Þ
where material parameters c and / are respectively the cohesion of
a material and the angle of the internal friction. For a given stress
state leading to failure, sn is the shear strength along the failure
surface, and rn is the normal stress at the failure surface. By
convention, we let rn > 0 correspond to a tensile stress and rn < 0
a compressive stress. We may express sn and rn in terms of the
principal stresses r1, r2 and r3 (with r1 P r2 P r3 and r2 = 0 in
this work):
sn ¼ r1 � r3

2
cos/; and rn ¼ r1 þ r3

2
þ r1 � r3

2
sin/ ð2Þ

In that manner, Eq. (1) can be reformulated as:

r1 � r3 ¼ 2c cos/� ðr1 þ r3Þ sin/ ð3Þ

From Eq. (3), it is convenient to obtain c and / for any two indepen-
dent critical combinations of shear stress and normal stress.
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Normally, c and / are derived by employing data from uniaxial ten-
sion ðr1 ¼ rt

s;r3 ¼ 0Þ and compression ðr1 ¼ 0;r3 ¼ �rc
sÞ tests,

where rt
s and rc

s are respectively the tensile strength and the com-
pressive strength. In that case, one may write the internal friction
coefficient a and the cohesion c as

a ¼ tan/ ¼ tan sin�1 rc
s � rt

s

rc
s þ rt

s

� �� �
; 2c ¼

ffiffiffiffiffiffiffiffiffiffi
rc

srt
s

p
ð4Þ

Given the fluctuation of measured strengths [38,39], the internal
friction coefficient a determined by Eq. (4) may vary significantly,
which could be evidently seen from the scattering of a from litera-
ture. Part of this variation in a obtained from compression tests
could arise from stress concentrations that occur in compression
that bias the fracture angle, as well as defects in the material
[11,12]. To circumvent the sensitivity of a to strength fluctuation,
we use the least square fitting to obtain c and /. As shown in
Fig. 2, the least square fitting to Eq. (3) yields a = 0.058 ± 0.012
and c = 1.026 ± 0.014 GPa.

In the same manner, the strength rY in the Mises criterion is
obtained by the least square fitting of the equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½ðr1 � r2Þ2 þ ðr1 � r3Þ2 þ ðr2 � r3Þ2�

r
¼ rY ð5Þ

to experimental data in Fig. 2, with r2 = 0 in this work. The least
square fitting leads to rY = 1.857 ± 0.117 GPa. The conventional
D–P [25] criterion can be expressed in terms of principal stresses
r1, r2 and r3 (with r1 P r2 P r3 and r2 = 0 in this work) as well:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6

ðr1 � r2Þ2 þ ðr1 � r3Þ2 þ ðr2 � r3Þ2
h ir

¼ Aþ Bðr1 þ r2 þ r3Þ
ð6Þ

The parameter A reflects the role of the equivalent stress (or von
Mises stress) while B is a dimensionless coefficient which quantifies
the contribution of the hydrostatic (or mean) stress. In the absence
of pressure sensitivity, A is exactly the shear strength used in the
von Mises criterion. Both parameters could be determined from
experiments. As D–P criterion was also applied to the deformation
of metallic glasses to capture its pressure dependent failure and
plastic flow behavior [22–24]. We present the predictions by the
D–P criterion with A = 1.066 ± 0.018 GPa and B = �0.016 ± 0.008
from the least square fitting using Eq. (6). As seen in Fig. 2, the curve
from D–P criterion prediction is close to that by the M–C criterion in
most regime of the normal stress, which explains why both criteria
can capture the deformation of metallic glasses in certain
boundary-value problems [21–24]. The D–P and M–C values are
very consistent with Lewandowiski’s report [3] using superimposed
method. We further note that parameters A and B in Eq. (6) obtained
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by least square fitting to the experimental data may be deduced
from the two material constants in the M–C criterion in Eq. (3):

A ¼ 6c cos/ffiffiffi
3

p
ð3� sin/Þ ; B ¼ 2 sin/ffiffiffi

3
p

ð3� sin/Þ ð7Þ

The two sets of parameters obtained from different strategies, how-
ever, may be not necessarily to be the same. Usually, the least
square fitting method can supply better accuracy.

The fitted tension and compression strength from the Mohr–
Coulomb criterion agree well with literature reports [3,14], espe-
cially with Bruck et al.’s [14] reports of uniaxial tensile strength
rt

s ¼ 1:93� 0:03 GPa, and a uniaxial compression strength of
rc

s ¼ 2:12� 0:05 GPa with the same kind of BMGs. However, they
[14] suggested that BMGs follow the pressure independent Mises
criterion. In our results shown in Fig. 2, while a Mises strength of
rY = 1.857 ± 0.117 GPa in Eq. (5) can fit most of the region, there
is apparent deviation of the theory from experimental data, in
particular as the normal stress approaches the compressive
strength. The friction coefficient a = 0.058 ± 0.012 and cohesion
c = 1.026 ± 0.014 GPa from M–C fitting agree well with literature
reports for samples tested with superimposed hydrostatic pressure
by Davis et al. [1] and Lewandowski et al. [3–7]. This confirms that
the failure strength in Vitreloy 1 is only moderately normal stress/
pressure-dependent when failure occurs by shear. However,
inclusion-initiated failure has been shown to change this depen-
dence [17].

It is of interest to examine whether the loading path would
influence the critical combinations of normal–shear stresses
shown in Fig. 2. We demonstrate this effect by conducting two con-
trast groups of experiments. We first report the shear stress versus
loading time in Fig. 3a, note here a constant tensile normal stress
r0 = 1.070 GPa is exerted. The sample failures at a critical shear
stress smax = 0.854 GPa. In the second experiment (see Fig. 3b),
we first apply torsion to the sample and then maintain the
applied torsion when the maximum shear stress satisfies
smax = 0.819 GPa – a value very close to the critical shear stress in
Fig. 3a, then the sample is subjected to tension till its failure at
an axial normal stress r0 = 1.078 GPa. Similar contrast experiments
were performed when the normal stress is compressive. In Fig. 3c,
we presented torsion induced failure when a constant compressive
normal stress r0 = �1.660 GPa is first applied, corresponding criti-
cal shear stress is smax = 0.770 GPa. Alternatively, when we main-
tain the shear stress to be constant smax = 0.814 GPa, the critical
normal compressive stress is r0 = �1.605 GPa. While there are
small difference between the combination of normal–shear stress
due to the load-control difficulty in experiments, our contrast
experiments shown in Fig. 3 suggest that the critical combination
of stresses shown in Fig. 2 is independent on loading path.
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We further check the fractographies of the failed samples under
mixing loading. Typically, the fractured samples subjected to ten-
sion and concurrent torsion show spiral fracture, as evidently seen
in the scanning electron microscope images shown in Fig. 4. For
completeness, we also show the fractographies of the metallic
glass Zr41 Ti14Cu12.5Ni10Be22.5 under simple tension (Fig. 4a) and
simple compression (Fig. 4i). The fractured angle in tension is
about 58�, and that in compression is about 180� � 136.8�
= 43.2�, in excellent agreement with previous report [40]. In
Fig. 4b–h, we show failed samples at different critical shear–nor-
mal stress combinations while the normal stress decreases from
r0 = 1.28 GPa to r0 = �0.58 GPa, respectively. It is interesting to
see when a sample fails under shear (induced by clockwise torsion)
and compressive normal stress, the fractured surface and the cylin-
drical surface form a right-hand spiral (Fig. 4f–h). In contrast, a
left-hand spiral forms as the normal stress is tensile (Fig. 4b–d).
In Fig. 4j, we show how we define a characteristic spiral angle h
+ b, which is the angle between the fracture surface and the axial
stress direction. Here h is the angle between the fracture surface
and the max principal stress r1 and b is the angle between the axial
stress r0 and r1 directions, as demonstrated in Fig. 4k.
θ+βT
m

j

σ0

Fig. 4. Spiral fracture of the metallic glass Zr41Ti14Cu12.5Ni10Be22.5 subjected to shear and
fracture angles at different critical maximum shear stress smax and axial normal stress
r0 = 0, smax = 0.99; (f) r0 = �0.17, smax = 0.96; (g) r0 = �0.42, smax = 1.05; (h) r0 = �0.58,
value agree well with Jiang et al.’s report [40]. (j) Illustration to show the definition o
coordinates and the relationship between the angles and the stress: h is the angle betwe
between the normal stress r0 and the maximum principal stress r1; rn is normal stress
Under classical Mohr–Coloumb strength criterion, the angle h is
constant, as illustrated in Fig. 5a. In this work, the equivalent inter-
nal friction angle / = 3.3�, which leads to h = 46.65�. As b is the
angle between the normal stress r0 and the max principal stress
r1, as demonstrated in Fig. 4k, we may write b in terms of a and
c in the Mohr–Coulomb strength criterion:
b ¼ tan�1 smax

r1

� �
with

r1 ¼ 2c cos/þr0ð1�sin/Þ
2

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2c cos/�r0 sin/Þ2�r2

0

p
2

8<
: ð8Þ
We may now apply Eq. (8), with a = 0.058 and c = 1.026 GPa from
Fig. 2 to calibrate the applicability of the M–C strength criterion.
We show in Fig. 5b the measured spiral fracture angle h + b (sym-
bols) as a function of the normal stress r0. The solid purple line is
the theoretical predictions by using Eq. (8), and it can be seen that
the difference between the predictions from Eq. (8) and those from
experiments is marginally small. When a sample is subjected to
simple tension and the normal stress r0 being the maximum prin-
cipal stress r1, we b = 0 and h ¼ � p
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normal stresses. (a) Fracture angle under uniaxial tension. (b)–(h) Variation of spiral
r0: (b) r0 = 1.28, smax = 0.77; (c) r0 = 0.73, smax = 0.89; (d) r0 = 0.63, smax = 1.00; (e)
smax = 1.00 (unit, GPa). (i) Fracture angle under uniaxial compression, and the angle
f angle h + b to characterize the spiral fracture. (k) Stress components in different
en the spiral fracture edge and the maximum principal stress r1, and b is the angle
, e.g. the normal stress at the fracture surface, and sn is the relative shear stress.
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While the M–C failure criterion captures the fracture behavior
in Zr41Ti14Cu12.5Ni10Be22.5 metallic glass, we neglect that dilatancy
effect during the plastic flow of the metallic glass. As pointed out
by Anand and Su [26], shear induced dilatancy could be crucial
in governing shear-band formation and propagation, which has
long been recognized in the deformation of granular materials
[41–43]. Indeed, free-volume generation or shear induced dilata-
tion was regarded to influence the plastic flow of metallic glasses
[28], in particular during confined deformation [26]. By consider-
ing the shear induced dilatancy, Anand and spitzig showed that
the inclination angle of the shear band with respect the max
principal stress direction h is determined by the internal
friction parameter a and the dilatancy parameter g, and predicts
that [43]

h ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aÞð1þ gÞ
ð1� aÞð1� gÞ

4

s" #
ð9Þ

Here g quantifies the difference between the averaged atomic cage
volume in a metallic glass during deformation and the cage volume
in a state of dense random packing, and is on the order of one hun-
dredth. We apply a = 0.058 and g = 0 and g = 0.05 to Eq. (9) to
examine the dependence of the inclination angle h on g, and we
get h = 45.83� and h = 46.55� respectively. The values of g, as long
as it is on the order of one hundredth, has negligible influence on
the fracture angle. The small dependence of fracture angle on g is
apparently seen in Eq. (9) as [(1 + g)/(1 � g)]0.25 would be rather
small if g is on the order of one hundredth.

We note that spiral fracture can be utilized to reveal the defor-
mation mechanisms of other materials like ductile metals and brit-
tle ceramics. In Fig. 6, we show the mechanical response of ductile
Al 6061 and brittle ceramic Al2O3 under combined shear and nor-
mal stresses. The plastic deformation and failure in Al 6061 is con-
sistent with typical failure mode in materials governed by Mises
type of plastic flow. Detailed analysis about the deformation pat-
tern induced by Mises type of plastic flow or the maximum shear
stress flow (also known as Mohr criterion where the frictional part
in the Mohr–Coulomb criterion is not considered) in tubes sub-
jected to torsion–tension was given by Taylor and Quinney in
1931 [35]. In the ceramic Al2O3, we also see the evolution of spiral
fracture at different normal stresses. It is straightforward to vali-
date that the fracture plane is the plane with the maximum tensile
stress, suggesting failure here is governed by the maximum tensile
stress. This is consistent with much previous work on the effects of
changes in stress state on flow and fracture, recently reviewed by
Lowhaphandu et al. [7].
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4. Conclusion

To conclude, we performed comprehensive experimental inves-
tigation on the failure of BMGs subjected to both shear and normal
stress. Our work leads to the finding of spiral fracture in Vitreloy 1
subjected to both shear and normal stresses. The M–C criterion,
using an internal friction coefficient of a = 0.058 ± 0.012 and a
cohesion of c = 1.026 ± 0.014 GPa, predicts the experimental
strength envelope well at all range of normal stress. This value of
a = 0.058 ± 0.012 is very consistent with other tests conducted
with superimposed hydrostatic pressure [1,3–7]. In contrast, pre-
dictions by the other criteria deviate apparently from experiments,
in particularly when the normal stress approaches the compressive
strength of Vitreloy 1. We further validate self-consistently the M–
C criterion, by examining its predictability to the spiral fracture
angles as a function of the applied normal stress. Our contrast
experiments suggest that the critical combination of normal–shear
stresses leading to failure is independent on loading path. While
dilatation might have played an important role for the formation
of localized deformation, we see that it exhibits negligible influ-
ence on the fracture angle as long as it is on the order of one hun-
dredth. Our results showed here lead to a novel experimental
strategy to examine critically the applicability of different strength
criteria to metallic glass and other materials.
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