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a b s t r a c t

The dynamic evolutions of different fracture morphologies in the fracture surface of brittle Mg-based
metallic glasses (MGs) were systematically and quantitatively studied by SEM and AFM. It shows that the
evolution of the fracture morphology pattern is dominated by an effective dynamic parameter of critical
crack tip curvature radius. Based on crack tip plastic zone and shear transformation zone (STZ) theories,
a theoretical model for the evolution of the crack tip curvature radius by considering the activation of
STZs during fracture was proposed. The model can simulate the crack propagation process, and predict
the critical crack tip curvature radius and the fracture pattern transition between the dimples and the
periodic corrugations solely occurring in brittle MGs. These results have implications for understanding
the microscopic fracture mechanism and the structural origin of fracture in MGs.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spatiotemporal patterns in nature, such as sweeping loops of
meandering rivers, crescent and star-shaped patterns of sand
dunes, and convective patterns of normal fluids, offer a direct clue
to understand the dynamic behaviors of non-equilibrium systems
[1–3]. The catastrophic brittle fracture of glasses, as a typical
non-equilibrium process, is one of the most poorly understood
fundamental phenomena in condensed matter physics [4,5]. The
disordered structure makes glasses exhibit much different and
unique dynamic fracture patterns compared with those of crystal-
line materials [6,7]. Particularly, for metallic glasses (MGs) com-
bining the glassy structure and nature, and metallic bonds, various
and plentiful dynamic fracture patterns like dimple structures [8],
periodic corrugations [9], and river patterns [8] appear selectively
in different regions of their fracture surface. The formation and
evolution of these fracture patterns in fracture surface is a favor-
able fingerprint to discover the unknown crack propagation
process and fracture mechanism in glasses. In addition, the
micro-scale and nano-scale fracture structure such as striped
structure might have potential applications in the nano-scale
grating and templates. However, the key factor controlling the
formation and evolution of these structures is still unclear.

The appearance of typical fracture morphology of dimple
structures suggests that the microscopic plastic deformation at
crack tip dominates the cracking process and the fracture pattern

formation in brittle MGs. However, there is no complete theore-
tical scheme to understand the plastic deformation at crack tip,
and the reasons for the MGs with diverse fracture toughness and
completely different fracture morphology are still unknown. The
plastic deformation of MGs is widely described by the cooperative
shearing of atomic clusters termed shear transformation zones
(STZs) [10], and the operation and proliferation of the flow units of
STZs further induce the drop in viscosity and the formation of
liquid-like zone at crack tip during fracture [11]. The STZ model
proposed by Argon [10] and further developed by Langer et al.
[12–14] is a systematic formulation of non-equilibrium thermo-
dynamics and captures many plastic deformation behaviors in
glassy materials. Recently, Bouchbinder et al. applied the STZ
theory to explain the tip blunting and velocity selection in
dynamic fracture [15]. Rycroft et al. used a simple version of STZ
model to calculate the fracture toughness and understand the
annealing-induced embrittlement of MGs [16]. The universal
fractal nature of the dimple structures in fracture surface of
various MGs can be illustrated properly by the athermal STZ
theory [17]. These results indicate that the STZ may be considered
as the microscopic deformation unit of fracture process, and the
STZ theory may be used as a theoretical frame to understand the
fracture pattern formation and transition in MGs [18,19].

The microscopic formation mechanism of the diverse fracture
morphology in MGs remains unclear. Especially, the effective
parameter which can be used to characterize the dynamic crack
propagation is lacking. Previous researches on the fracture mor-
phology evolution of MGs mainly focused on the average space or
depth of typical patterns, and these parameters hardly revealed
the dynamic information of the crack propagation [20–22]. Recent
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researches [23,24] show that the crack tip curvature radius and
the crack propagation velocity are relevant dynamical variables
during dynamic fracture, which could dominate the crack propa-
gation and control the fracture pattern transition in MGs,
while their relationship has been less studied experimentally
and theoretically.

In this paper, the brittle Mg65Cu25Gd10 MG (toughness KC¼
2MPam1/2) was selected as a model system since various fracture
patterns appear in its fracture surface. The fractographic evolution and
the corresponding crack tip curvature radius evolution during crack
propagation are investigated by a new parameter of crack tip
curvature radius. We find that there exists a critical crack tip curvature
radius controlling the pattern transition from the dimple structures to
the periodical corrugations. A theoretical scenario based on the
truncated version of the STZ theory is proposed to understand the
dynamical evolution of crack tip curvature radius and the mechanism
of fracture pattern transition in brittle MGs. These results might
provide useful insight into the fracture mechanism of MGs and could
be generally applicable to other glassy materials.

2. Experimental

The brittle Mg65Cu25Y10 metallic glass ingots were prepared by
induction melting a mixture of pure metal elements, followed by
sucking cast into a Cu mold under argon gas atmosphere to get the

plate-like specimens 5�3�60 mm3 in geometric size. The amor-
phous structures of the samples were identified by a Rigaku X-ray
diffractometer (XRD) with Cu Kα radiation and differential scan-
ning calorimetry. The three-point bending tests were carried out
in an Instron 3384 machine (Norwood, MA) with a crosshead
moving speed of 0.1 mmmin�1 at room temperature. The bending
test was repeated three times to confirm the experiment results.
Specimens for pre-notched three-point bending tests had a geo-
metric size 3�2�15 mm3. A diamond saw was used to introduce
a seed notch (250 μm in width and 500 μm in depth) in the center
of the plates. The newly created fracture surfaces were observed
by a Philips XL30 scanning electron microscopy (SEM) instrument
with the high resolution of 1.5 nm and a Oxford Instruments
MFP-3D Stand Alone atomic force microscope (MFP-3D-SA AFM).

3. Results and discussion

3.1. SEM observation of fracture morphology in fracture surface

Fig. 1(a) shows the typical mirror-like fracture surface profile of the
Mg-based MG. The fracture surface clearly displays the distinct river-
like, mist, mirror zones along the crack propagation direction similar
to previous reports [9,11,20]. The fractographic evolution sequence is
the dimples in river-like zone b [Fig. 1(b)], the dimple and period-
ical corrugation mixed structures in mist zone c [Fig. 1(c)], and

Fig. 1. (a) Overview of the fracture surface of Mg65Cu25Y10 under three-point bending fracture (the dashed arrow indicates the crack propagation direction). (b)–(e) Detail
morphology of zone b, zone c, zone d, zone e in (a), correspondingly.
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periodical corrugations in mirror zones d and e [Fig. 1(d) and (e)].
It has been demonstrated that the main fracture surface features
remain unchanged except the relative space ranges of different
fracture pattern zones that change upon the fracture strain rate
[8,9]. The SEM images in Fig. 1 show that the typical size of each
fracture pattern shows no large variation. Obviously, the different
fracture morphology zones correspond to the different pattern forma-
tion stages in dynamical fracture of the brittle MGs.

3.2. AFM characterization of various fracture patterns in fracture
surface

The AFM was applied to quantitatively characterize the fracture
morphology evolution with the crack propagation distance L from
the notch. Fig. 2 shows the evolution of the average spacing d
and the depth h of the various fracture patterns, and the data of
each fracture pattern are also listed in Table 1. Obviously, the d
decreases continuously from the river-like zone to the mirror
zone and the depth h remains unchanged at LE1000 μm, which
is consistent with previous studies [20,22]. However, when
LE2000 μm as indicated in Fig. 2, the pattern transition from
the dimple to the periodic corrugation appears, indicating that the
parameters d and h can hardly reveal the fracture pattern transi-
tion mechanism in brittle MGs. Next, we attempt to introduce a
new dynamical variable of crack tip curvature radius RC to
effectively evaluate the crack propagation process as the following.

Owing to the large deviation in determining the crack tip
curvature radius RC experimentally, another experimentally obtained
dynamic parameter к having a positive correlation with RC is
proposed as below. Based on the crack tip plastic zone model and

previous experimental results [11,25], the up–down corresponding
fracture surfaces of MGs show the peak-to-peak matching style,
which indicates that a sequence of fracture morphologies starts from
the cavitations by the progressive local separation in the plastic zone
as shown in Fig. 3(a). Bouchaud et al. [26] also got the similar
experimental results by using the Frasta method to reconstruct
the cavity formation during the fracture process. Compared to the
irregular fracture morphologies in ductile MGs [21,26], the cavita-
tions leading to the formation of fracture patterns of brittle MGs are
regular and quasi-periodic as shown in Fig. 1 and based on the
previous research [22]. Therefore, these cavitations can be well
described by a regular geometric model: that is the ellipse config-
uration. Considering the actual value of the spacing and depth of the
fracture patterns listed in Table 1, we could reasonably consider the
cavitations leading to the formation of dimple structures and
periodic corrugations as a series of elliptic holes in the left part in
Fig. 3(a). And the half values of spacing d/2 and depth h are
considered as the major radius and minor radius of the elliptic hole
respectively as shown in Fig. 3(b). Due to the small value of the ratio
between d and h, the ratio between the major radius and minor
radius, к¼h/(d/2)¼tan φ, should be approximately proportional to φ,
that is, κ¼ tanφpφ. During the crack propagation process, the crack
tip curvature radius RC varies dynamically and the parameter φ
displays the same trend with RC concomitantly considering the
geometric character of the elliptical hole. Thus, the variable к exhibits
the same tendency with RC during the whole dynamic fracture
process, and then can be used to characterize the evolution of
fracture patterns and plays the same role with RC. It is noted that
this approximation may be convenient and effective in experimental
date processing, and the approximation might be applied to study
other fracture problems, such as the structural origin of nanoscale
cavitations during the deformation of MGs [27].

Fig. 2 also shows the evolution of the dynamic variable к along
the crack propagation direction. One can see clearly that к exhibits
a large decrease when the pattern changes from the dimple
structures to the periodic corrugations and then keeps a stable
value. This reveals that there is a critical value of к controlling the
fracture pattern evolution, which indicates physically that there is
a critical RC separating the dimple pattern from the periodic stripe
pattern. And the different RC regimes described above might
correspond to the common mirror–mist–hackle transition, a
fractographic characterization which corresponds to the progres-
sive increase in surface roughness with the crack speed [8,9,11].
These results are also consistent with the appearance of the critical
crack propagation velocity and the drop in the stress intensity
factor during the transition between the dimple structures and the
periodic corrugations [22,25,28]. The existence of the critical crack
tip curvature radius RC may be used to tune the appearance of
different fracture patterns in fracture surface of MGs. To further
understand the fracture pattern transition mechanism and the
appearance of the critical RC, we propose a theoretical model of
the fracture process in brittle MGs based on the STZ theory.

3.3. The model of the dynamic fracture in brittle MGs based on STZ
theory

Theoretically solving the dynamic crack propagation problem is
in general extremely difficult due to the coupling between various
parameters across different scales in fracture including the typical
size of the crack tip plastic zone and the scale of STZs, which are
two main factors governing the dynamic fracture of MGs
[8,11,22,29]. A promising theoretical scheme of the dynamics
fracture in amorphous materials was proposed recently by Larger
[30,31]. By considering the crack tip curvature radius RC and the
crack propagation speed vtip as the relevant dynamical variables
and considering the crack advance as a process governed solely by

d
h

d
 h

L 

Fig. 2. Average spacing d, depth h and dynamic parameter к of different fracture
patterns as functions of crack propagation distance L are displayed by the black,
wine and blue dash–dot lines, respectively. The pink vertical line indicates the
location of fracture morphology transition from the dimple structures to the
periodic corrugations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 1
The data of different fracture patterns in fracture surface measured by AFM. L is the
crack propagation distance from the notch edge site to the measurement site; d and
h are the average size and the depth of fracture patterns, respectively; к is the ratio
value between d/2 and h, which is equivalent to crack tip curvature radius.

L (μm) d (nm) h (nm) к Fracture patterns

�100 174 28 0.322 Dimple structure
�300 109 16.3 0.299 Dimple structure
�800 65 10.5 0.323 Mixture structure
�1200 44 5.4 0.245 Mixture structure
�2000 34 4 0.235 Mixture structure
�2500 21 2.4 0.229 Periodic corrugation
�2800 18 2 0.23 Periodic corrugation
�3000 15 1.7 0.23 Periodic corrugation
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plastic deformation at crack tip, the tip-stress puzzle between the
conventional theories of plasticity and the descriptions of brittle
fracture could be understood. Here, we propose a model for the
crack tip curvature evolution during fracture of brittle MGs based
on the STZ theory of brittle fracture [30–32] to grasp the micro-
scopic fracture mechanism and the formation mechanism of
fracture surface morphologies.

3.3.1. Microscopic physical picture of the crack tip evolution during
fracture in brittle MGs

Compared with the tough MGs which exhibit a much larger
scale of local plasticity and significant crack bifurcation and micro-
branching [28], brittle MGs such as Mg-, Dy- and Fe-based MGs
approaching the ideal brittleness of silicate glasses display the
nano-scale crack-tip plasticity and no obvious micro-branching
instability [8], which leads to the formation of regular fracture
patterns and the stable crack propagation in every pattern forma-
tion stage. This indicates that there exists a weak stress-dependent
factor influence in plastic zone of crack tip during fracture in
brittle MGs. Therefore, the basic approximation of brittle fracture
in amorphous materials based on the STZ theory in Ref. [32],
where a strongly stress-dependent rate factor governing memory
effects of plastic deformation could be omitted in brittle fracture,
is very suitable for the fracture process in brittle MGs. According to
the approximation, the dynamic variables RC and vtip could be
regarded to be completely determined by the crack tip plastic zone
[11], and thus be governed solely by the plastic deformation at

crack tip, which greatly reduces the factors influencing the fracture
process and crack propagation in our model.

In our previous work [17], a microscopic picture for the
formation of the plastic zone at crack tip considering the creation
and annihilation of STZs is proposed to explain the fractal nature
of the dimples structures of different MGs with different fracture
toughness. Here, a physical model of the dynamic evolution of the
crack tip in brittle MGs is proposed based on the above picture:
firstly, some initial STZs are activated with the effect of the shear
stress s in the neighborhood zone of crack tip during fracture. The
operation of these STZs creates a localized softening of the
surrounding material and triggers the autocatalytic formation of
more STZs at the crack tip. The organization of STZs coalesces
together into a softening zone – the plastic zone – during fracture.
During the dynamic fracture, STZs in plastic zone at crack tip
create and annihilate continuously, which induces the dynamic
evolution of the stress s and the rate-of-deformation _spl in plastic
zone at crack tip. And the dynamic evolution of the plastic zone at
crack tip shows the dynamic evolution of RC and vtip, which
directly leads to the fracture patterns formation and transition
during fracture. Thus, it is the activation (creation and annihila-
tion) of STZs in MGs that controls completely the crack propaga-
tion of MGs and the fracture pattern transition during fracture as
exhibited in Fig. 3(b). The RC is the crack tip curvature radius, and
the RP stands for the curvature radius of the plastic zone at crack
tip as indicated in Fig. 3(b). During fracture, the RC and RP evolve
separately and the actual fracture process is a discontinuous and
step-by-step process [22]. However, considering the effect of the
crack tip configuration on the following plastic zone formation
[23], we could approximately regard the spatial evolution of RC
during fracture as a continuous change process. That is, the RP(t) of
the plastic zone at time t could be considered as the crack tip
curvature radius RC(tþΔt) in following time (tþΔt) during frac-
ture. Δt is the time interval that the crack tip propagates from the
location of L(t) to the location L(tþΔt). The time interval Δt should
be short enough to consider the crack tip evolution process as a
continuous process compared to the experimental observation
time Δt0. To make this model more suitable for the dynamic
fracture of brittle MGs, the crack tip profile is approximately
regarded as a highly elongated elliptical hole rather than a circular
hole in conventional fracture problems, and the crack tip remains
elliptical during fracture. Considering that the above experimental
dynamic variable к is small during the whole crack propagation,
the elliptical approximation is physically reasonable. Based on the
above model of the plastic zone at crack tip and the quasi-static
three-point bending experimental conditions, the truncated STZ
theory omitting strongly stress-dependent rate factor [32] can be
applied reasonably to analyze the dynamical crack tip evolution of
brittle MGs.

3.3.2. Theoretical brittle fracture model based on the STZ theory
Based on the STZ theory [31], the dynamic evolution of the

stress and the rate-of-deformation during fracture are in the two
coupled main equations:

_εpl � 1
τ
ðλs�ΔÞ ð1Þ

_Δ� _εpl� _εpls
λs2y

 !
Δ: ð2Þ

Here, _εpl is the plastic strain rate, s the deviatoric stress, sy is the
yield stress, Δ is a tensor describing the anisotropy in the STZ's
orientations, λ is a parameter of dimension inverse stress that
measures the plastic strain rate sensitivity to stress, and τ is a
typical time scale for atomic rearrangement.

Fig. 3. (a) Sketch of the formation mechanism of fracture patterns of brittle MGs.
The string of ellipses starting from the notch represent the holes generated during
the crack propagation, leading to the formation of different fracture patterns. In the
notch, the Cartesian coordinates (x, y) and the elliptical coordinates (ρ, θ) are both
shown. (b) Microscopic physical model of crack tip [region circled by the red
dashed circle in (a)]. RC is the crack tip curvature radius. RP is the curvature radius of
the plastic zone at crack tip. φ is the angle in the elliptic hole model having a
positive correlation with the crack tip curvature radius. The fracture groove points
are inward in the illustration. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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To calculate conveniently the variables of the elliptical crack tip
configuration during fracture, the Cartesian coordinates (x, y) are
transformed into the elliptical coordinates (ρ, θ) by x¼W(ρþm/ρ)cos θ
and y¼W(ρ�m/ρ)sin θ as shown in the left part in Fig. 3(a), where m
andW are variables describing the elliptical hole profile. The semimajor
and semiminor axe lengths of the ellipse hole are W(1þm) and W
(1�m) respectively and 14m40. The stress tensor σ and the rate of
plastic strain tensor D in the neighborhood of the elliptical hole can be
got based on Ref. [33] and have been calculated in Ref. [32]. The stresses
σ in the neighborhood of the elliptical hole are

σρρþσθθ ¼ σ1Re 1þ2ð1þmÞe�2iθ

ρ2�me�2iθ

� �
ð3Þ

Sðρ; θÞ ¼ σθθ�σρρþ2iσρθ

¼ σ1ρ2e2iθ

ρ2�me2iθ
1�e�2iθ

mρ2
þ ð1þmÞe�2iθ

ðρ2�me�2iθÞ2
Mðρ; θÞ

" #
ð4Þ

where Mðρ; θÞ ¼ ðρ2=mÞð1�2me�2iθþm2Þþe�2iθð1�2me2iθþm2Þ,
and the deviator stress

sθθ ¼ �sρρ ¼
1
2
ReSðρ; θÞ; sρθ ¼

1
2
ImSðρ; θÞ: ð5Þ

And the rate-of-deformation tensors D are [32]

Dρρ ¼
1

WN
∂vρ
∂ρ

þvθ
ρ

1
N
∂N
∂θ

� �
ð6Þ

Dθθ ¼ 1
WNρ

∂vθ
∂θ

þvρ
ρ

1
N

∂
∂ρ
ðρNÞ

� �
ð7Þ

Dρθ ¼ 1
2WN

1
ρ

∂vρ
∂θ

þ∂vθ
∂ρ

�vθ
ρ
�vρ
N
∂N
∂θ

�vθ
N
∂N
∂ρ

� �
ð8Þ

where N2ðρ; θÞ ¼ 1þðm2=ρ4Þ�2ðm=ρ2Þ cos 2θ, vρ and vθ are the
radial and angular velocities in the elliptical hole respectively.
Eqs. (3)–(8) are the basic functions controlling the stresses and the
rate-of-deformation tensors in the neighbor of holes at crack tip
and these equations are universal during brittle fracture in
amorphous materials [32,33].

In order to determine the motion of the elliptical crack tip, the
normal velocity on the surface at crack tip (ρ¼1, θ¼0), vn(θ) needs
to be computed, that is, the crack propagation velocity vtip, and the
rate of change of the curvature of the crack tip surface _K . The two
dynamic parameters can be calculated from Eqs. (1) to (8) based
on the approximation that the normal velocity at crack tip vn(θ) is
ðλ=τÞK �1ðθÞ½sθθð1; θÞ�sy� for sθθ4sy and zero for otherwise, which
means that the angular velocity vθ vanishes and the plastic flow is
purely radial. During fracture of brittle MGs, the fracture surfaces
are almost flat and mirror-like, and the crack tip propagates along
the main fracture plane surface, which means that the radial
velocity dominates the crack propagation during fracture. Thus,
based on the above analysis of the fracture process in brittle MGs,
this approximation seems to be well satisfied in our model. The
crack propagation velocity vtip, and the rate of change of the
curvature of the crack tip surface _K are (the detailed calculations
can be seen in Ref. [32])

vtip ¼ vρ ¼ 1ðθ¼ 0Þffiλ

τ
σ1

ffiffiffiffiffiffiffiffi
2W
Ktip

s
� sy
Ktip

�cγ

 !
ð9Þ

_Ktipffi
2λ
τ
ð�σ1

ffiffiffiffiffiffiffiffi
2W

p
K3=2
tip þ2syKtip�dγK2

tipÞ; ð10Þ

where W is one-quarter of the major length of the ellipse hole
(in fracture surface of MGs, 4W is the typical size of the dimple
structure considering the highly elongated elliptical hole model
and the above transformation relation between the elliptical

coordinates and the Cartesian coordinates); σ1 is the applied
stress at infinity; γ the surface tension; c and d are the numerical
coefficients. From Eq. (10), considering the relationship between
Ktip and Rtip, Ktip ¼ 1=Rtip, we can get the expression of the
evolution process of the crack tip curvature radius Rtip:

_Rtip ¼ �4λ
τ
syRtipþ

2λ
τ
σ1

ffiffiffiffiffiffiffiffi
2W

p
R1=2
tip þ2dγ

λ

τ
: ð11Þ

Eqs. (9) and (11) can completely describe the evolution process
of the crack propagation velocity and the crack tip curvature
radius, and meanwhile control the patterns transition among
different fracture morphologies.

3.3.3. Critical crack tip curvature radius calculations based on the
model of the dynamic fracture in brittle MGs

By analyzing Eqs. (9) and (11), one can find there exists a steady
crack tip curvature radius Rn

tip and a crack velocity vntip [32] during
the dynamic fracture. By setting the right part of Eq. (11) zero and
we can get the steady value of Rtip:

Rn

tip ¼
1

2Wkn2
γ2

σ21
ð12Þ

vntip ¼
λγ

τ

1
kn

�c� 1

2gkn2

 !
ð13Þ

where kn ¼ ð1=2dÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð4d=gÞ

p
�1Þ, g¼ ðWσ21=γsyÞ. This result is

consistent with the experimental result that there exists the
steady crack propagation velocity in fracture of brittle MGs. From
Eq. (12), we can get

Rn

tip ¼
1

2W ð1=2dÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð4d=gÞ

p
�1Þ

h i2 γ2

σ21

¼ 2d2

Wσ21

γ2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð4d=gÞ

p
�1Þ2

ð14Þ

By introducing the expression of g, we can transform Eq. (14)
into

Rn

tip ¼ 2d2 γ
sy

γsy
Wσ21

1
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð4d=gÞ

p
�1Þ2

¼ γ

sy

2d2

g
1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð4d=gÞ

p
�1Þ2

ð15Þ

Taking the values of the relevant parameters into Eq. (15), we
obtain the values of g which are listed in Table 2. From the values
of g in Table 2, we can calculate the average value of g for various
brittle MGs: gaverageE62, with a standard error value of about 1.84.
As shown in the inset in Fig. 4, the value of g can be considered as
a constant for different brittle MGs. It should be noted that the
value of g for Zr57Nb5Cu15.4Ni12.6Al10 (typical tough MG) is about
6.5�103, and is far from the average value of g of brittle MGs,
which indicates that our fracture model may not be applicable for
tough MGs. Based on the above analysis, Eq. (15) can be changed
into

Rn

tip ¼
γ

sy
A0 ð16Þ

where A0 ¼ ð2d2=gÞð1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð4d=gÞ

p
�1Þ2Þ, a constant for various

brittle MGs. Thus, Eq. (16) can be written into

Rn

tipp
γ

sy
: ð17Þ

This result is consistent with the experimental result of Rn

tip �
1024ðγ=GÞ [22] considering the relationship syEεCG (G is the shear
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modulus; εC is a constant as following) indicating that our dynamic
fracture model is justifiable. The relationship Rn

tipp ðγ=GÞ can be
easily understood in MGs since the fracture process involves
breaking of liquid-like meniscus at crack tip and then the factor
γ plays a critical role. The plastic deformation at crack tip causes
the formation of the plastic zone and then dominates the dynamic
evolution of fracture morphology, where the factor G reflects the
effect of plastic deformation during fracture. Thus, this relation-
ship actually reflects the competition relationship between the
two processes – the meniscus instability (Ref. [11]) and the plastic
deformation at crack tip-deciding the crack tip evolution. These
analyses are approximately consistent with our dynamic fracture
model for brittle MGs in experiments.

To conveniently estimate the value of Rn

tip, we let syEεCG,
where G is the shear modulus and εC is the universal elastic strain
limit (�0.0267 in Ref. [34]) for all MGs, and this relationship has
been confirmed by the previous theoretical and experimental
research [34,35]. For MGs, the typical values of γ for various brittle
MGs are in the order of 0.7–1 N/m [22] and then γ could
approximately be considered as a constant. Therefore, the values
of Rn

tip are roughly proportional to 1/G, as shown in Fig. 4:

Rn

tipp
1
G
: ð18Þ

The simple relationship indicates that one could obtain the
various fracture patterns by tuning simply the shear modulus of
MGs. We note that in elastic model [34,35], the activation energy
of STZs is mainly determined by G. The obtained relationship of

Eq. (18) further confirms the close relationship between the STZ
and plastic zone at the tip of crack in brittle MGs.

For Mg65Cu25Gd10 MG, σ1¼σy¼660 MPa, syEεCG¼0.52 GPa,
γ¼0.7 N/m, c¼0.5 and d¼1. Considering the highly elongated
elliptical hole of crack tip plastic zone, the major length of the
ellipse hole 4W is the typical size of the dimple of 200 nm for the
MGs [8]. The experimental critical crack propagation velocity of
the MGs vC is about 0.3–0.6vRE1247 m/s [21,36], where vR is the
Rayleigh wave speed (vRE0.9225vS, vS the shear wave velocity).
The numerical coefficients c and d are 0.5 and 1, respectively.
Taking the values of these variables into Eq. (13), we get λ/τE60.
Thus, the value of Rn

tip estimated from Eq. (12) is �39 nm, which
fits very well with the experimental result of 34 nm. The Rn

tip of
other brittle MGs are also estimated and listed in Table 2. Fig. 5
shows a comparison between the estimated Rn

tip and the experi-
mental Rn

exp for various brittle MGs. Apparently, the Rn

tip from our
model fits well with the experimental results for brittle MGs. We
note that our model based on the STZ coalescence and cavitation
in plastic zone is invalid for tough MGs. For tough Zr-based MG,
the large deviation appears between the theoretical and experi-
mental results as shown in Fig. 5. Considering the above omission
of strongly stress-dependent rate factor governing memory effects
of plastic deformation and the microscale local plastic zone of
tough MGs, the deviation is reasonable since the strongly stress-
dependent rate factor plays a more critical role in fracture of tough
MGs, leading to a significant crack bifurcation and branching.

3.3.4. Crack tip sharpening and blunting phenomena
We further study the qualitative evolution of the Rtip with

different initial crack tip curvature radii R0
tip during the whole

dynamic fracture. Considering the succinctness of the equation, let

Table 2
Critical crack tip curvature radius from calculations Rn

tip and experiments Rn

exp [22], activation energy of STZs ESTZ�0.39GVm calculated based on cooperative shear model

[18,34] in MGs with different fracture toughness KIC. Values of parameter g in Eq. (13) can be calculated by g¼ ðWσy2=γεyGÞ. Data of KIC, G, and Vm are from Ref. [35].

Metallic glasses KIC (MPa m1/2) G (GPa) Vm (cm3/mol) ESTZ (kJ/mol) g Rn

exp (nm) Rn

tip (nm) Brittle or tough

Dy40Y16Al24Co20 1.26 4.4 13.54 128.8 62.4 42 51 Brittle
Mg65Cu25Tb10 �2 9.6 11.96 91.4 60.4 41.5 42.4 Brittle
Mg65Cu25Gd10 �2 9.3 12.50 94.1 59.3 34 39 Brittle
Fe65.5Cr4Mo4Ca4P12C5B5.5 �2 8.5 6.71 153.1 63.4 26 28.7 Brittle
Fe73.5Cu1Nb3Si13.5B9 2.7 8 6.86 181.9 62 30 28.2 Brittle
La55Al25Ni5Cu10Co5 5 5.6 16.15 92.9 58.8 60 73 Brittle
Zr57Nb5Cu15.4Ni12.6Al10 27 2 11.44 142.8 6.5�103 46.5 5.6�103 Tough

G
 

R* 

g

KIC

g

Fig. 4. The relationships of critical crack tip curvature radius Rn

tip and shear
modulus G. The wine curve stands for the fitting curve of Rn

tipp1/G. The inset
shows the values of the intermediate parameter g in Eq. (13) of brittle MGs with
different fracture toughness. The red dashed line represents the average value of g
of six brittle MGs (the value of g of tough Zr57Nb5Cu15.4Ni12.6Al10 MG is not included
in this plot), about 62. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

KIC

R
tip

Rtip
Rexp

Fig. 5. Critical crack tip curvature radius from calculations Rn

tip and experiments
Rn

exp of seven MGs. The red dashed line represents the boundary between the brittle
and tough MGs. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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A¼ ð2λ=τÞ2sy, B¼ ð2λ=τÞσ1
ffiffiffiffiffiffiffiffi
2W

p
, C ¼ dγð2λ=τÞ, and Eq. (11) is then

transformed into

_R¼ �ARþBR1=2þC: ð19Þ

Taking the values of related dynamic variables of the crack tip
for Mg65Cu25Gd10 into Eq. (19) and introducing two new variables:
the reduced crack tip curvature radius R0

tip¼108Rtip and the
reduced time t0 ¼109t, Eq. (19) is then transformed into

dR0

dt0
¼ �123:67R0 þ250:45R01=2þ8:4: ð20Þ

Fig. 6 illustrates the qualitative evolution of the R0
tip with the

increase of the reduced time t' when the R0
tip gets the values

of 50 nm and 10 nm, corresponding to the above and below Rn

tip
(¼39 nm). When R0

tip4Rn

tip, the crack tip sharpens, and the Rtip
decreases; when R0

tipoRn

tip, the crack tip blunts, and the Rtip
increases. Based on the experimental results of the evolution of
the crack tip and the pattern transition among different fracture
patterns in Fig. 2, we infer that the crack tip sharpening originated
from the nano-scale plasticity at crack tip in this model which
leads to the fracture pattern transition from the dimple structures
to the periodic corrugations during fracture in MGs.

For the predicted crack tip blunting behavior deduced from our
model, it may explain the prior formation of the periodical stripes
rather than the dimple structures in the initial stage of fracture for
samples without pre-notches in the three bending test [25]. For
samples without notches, small cavitations with nano-scale size
form firstly as the seed cracks and the radius of the seed cracks are
generally smaller than the critical crack tip curvature radius. Then
the tip radius of these cavitations becomes bigger during plastic
deformation at crack tip, which causes the crack tip to blunt, and
these cavitations self-organize into periodical stripes. When the
crack tip curvature radius is close to the Rn

tip, the periodic stripe
pattern is replaced by the dimple pattern.

To show clearly the relationship between the STZ and the
fracture morphology, the scheme of STZs evolution in plastic zone
at crack tip, crack tip curvature evolution and fracture morphology
evolution with the crack propagation distance, L, is shown in Fig. 7.
From Fig. 7, one can see that STZs in the plastic zone at crack tip
evolves during the whole crack propagation and the spatial
distribution of STZs becomes sparse, leading to the dynamic
evolution of the crack tip curvature radius. Based on the above
analysis, the dynamic evolution of the crack tip curvature radius
induces the fracture morphology transition on the fracture surface
when Rtip is close to the critical value Rn

tip.

3.3.5. Contrasting the crack tip curvature radius with the activation
energy of STZs in metallic glasses with different fracture toughness

To understand the different fracture behaviors of metallic
glasses with different fracture toughness, we also contrast the
Rn

tip and the activation energy of STZs, ESTZ, with MGs of different
fracture toughness in Fig. 8. As is shown by the red dashed arrow
line in Fig. 8, the Rn

tip displays a downward trend with the increase
of the ESTZ. This result indicates that the tough MGs such as
Zr-based MGs with higher values of ESTZ compared to those of
brittle MGs and micro-scale local plastic zone [18] have lower Rn

tip
value, and their crack propagation process finishes before the Rtip
reaches the critical value Rn

tip. This is the reason why the dimple
patterns are the main fracture morphology in tough MGs [28]
rather than the appearance of the pattern transition. This explains
why the fracture pattern transition from the dimple structures to
the periodic corrugations is prone to occur in fracture surface of
brittle MGs. Based on the above analysis, one might modulate the
activation energy or density of STZs in MGs to get the tunable
micro-scale and nano-scale fracture structures by micro-alloying
and structural relaxation [37,38], which needs further research in
future. The results also imply that the fracture behaviors of MGs
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Fig. 6. Crack tip curvature radius evolution during fracture with the initial crack tip
curvature radius R0

tip¼50 nm and 10 nm. The red dashed line represents the stable
crack tip curvature radius. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 7. Scheme of STZs evolution in plastic zone at crack tip, crack tip curvature
evolution and fracture morphology evolution with the crack propagation
distance, L.
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Fig. 8. The relationships of critical crack tip curvature radius Rn
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the increase of ESTZ. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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are closely related to their intrinsic heterogeneous structure and
flow units in metallic glasses [39–45], which provides useful
insight into the structural origin of the fracture process and crack
evolution in MGs.

4. Conclusions

(1) Various fracture morphologies in fracture surface of Mg65Cu25-
Gd10 were studied systematically and quantitatively by SEM
and AFM. A new experimental parameter – the critical crack
tip curvature radius – was proposed, which can clearly reveal
the dynamic evolution of crack propagation and control the
pattern transition among different fracture morphologies of
brittle MGs.

(2) To simulate the crack propagation process and predict the
critical crack tip curvature radius, the proposed microscopic
theoretical model of the crack tip curvature radius evolution
based on the STZ theory was developed. The crack tip
sharpening and the crack tip blunting phenomena from the
model explain appropriately the pattern transition from the
dimple structures to the periodic corrugations and from the
nano-scale cavitations to the periodic corrugations.

(3) By contrasting the critical crack tip curvature radii with the
activation energy of STZs of metallic glasses with different
fracture toughness, the fracture pattern transition among
various fracture patterns is prone to take place in brittle MGs
with the higher activation energy of STZs. It indicates that the
controllable fracture structure may be obtained by tuning the
activation energy and the density of STZs, which relates the
fracture behavior to the heterogeneous structure of MGs.
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