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We report that the glass transition temperature (Tg) of a variety of metallic glasses (MGs) correlates with
the eutectic or peritectic temperature of two main components corresponding stoichiometric proportion
in their binary phase diagram. The correlation suggests that the Tg of MGs is mainly determined by their
solvent of two base components, which have composition close to the eutectic and peritectic points in the
binary phase diagram and the weakest link in amorphous structure. The results have implications for
understanding the structure and glass transition in MGs and for predicting and designing metallic glasses
with a desirable Tg.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In contrast to conventional metallic alloys, metallic glasses
(MGs) are macroscopically isotropic and homogeneous, and micro-
scopically liquid-like disordered structure containing short-range
orders (SRO) and medium-range orders (MRO) [1,2]. The structure
of the MGs is regarded to inherit from their liquid state. The SRO is
modeled as the solute-centered clusters, and the MRO is the highly
structured superclusters consisting of interconnected smaller clus-
ters and the packing of the SRO [1–3]. The MRO have been found to
closely correlate with the features and properties of MGs [1–5]. Ma
et al. showed that the elastic moduli of some MGs inherit from
their solvent components [6], and the elastic properties, the plas-
ticity, some physical properties, and glass transition in some MGs
are found to inherit from the base components [5]. The pressure-
induced polyamorphism in lanthanide-based MGs related to the
electronic structure of 4f electrons is also found to be inherited
from its lanthanide-solvent constituent and the results suggest
that the electrical properties of MGs might inherit from their base
components as well [7]. On the other hand, Poisson’s ratio, which is
physical parameter for characterize the solid, is found to correlate
with the viscous characteristic of its liquid [8], and the glass tran-
sition of MGs has the characteristics of melting [9–11]. This dem-
onstrates that the glass transition in MGs might have the similar
family traits [4] and could relate to the melting temperature of
their base components which also correlates with the glass-form-
ing ability in glass-forming alloys [12–19].
In this paper, the relationship between the glass transition
temperature (Tg) and the temperature of the eutectic or peritec-
tic point [Tm(AxBy)] of two base components in their binary phase
diagram in various MGs is investigated. It is found that the Tg

shows a better linear relationship with the Tm(AxBy) than that of
the base element melting temperature in various MGs. The
results confirm that there exist the weakest link and inhomoge-
neous structure in MGs, and close relationship among the glass
transition, melting and microstructural characteristics in glass-
forming alloys.

2. The theories

The studied bulk MGs samples exhibit a wide range of glass
transition temperature, Tg, and significantly difference in physical
and mechanical properties [3,8]. Both the elastic moduli C and
the Tg of MGs show the similar ‘‘rule of mixtures’’ [11,20],

C�1 ¼
X

fi �
1
Ci

� �
; ð1Þ

Tg ¼ 0:385
X

fiðTmÞi; ð2Þ

where Ci and (Tm)i is the modulus and melting temperature of con-
stituent element i; fi is the atomic percent of element i.

The Tg of various MGs has a close correlation with the elastic
moduli [21]:

Tg ¼ 2:5E; ð3Þ

Tg / MG; ð4Þ
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Fig. 1. Glass transition temperature (Tg) vs. the melting temperature [Tm(base)] of
their base components of various metallic glasses. The statistical analysis R-square
is about 0.35.
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where E is the Young’s modulus, M is the molar mass of MG, and G is
the shear modulus. According to the Lindermann melting criterion,
the melting temperature Tm of a solid is related to Debye tempera-
ture hD [22] which is closely related to the elastic modulus. In MGs,
the relationship between Tg and hD is [9]

Tg ¼ aMh2
D; ð5Þ

here a is a constant. The MGs can also inherit the feature and the
properties from the base component [2,3,5].

Based on previous research results (Eqs. (1)–(5)), it is expected
that the MGs might inherit their glass transition temperature from
their base components. According to Eq. (5), the Tg of base compo-
nent correlates with its Tm. The data of Tg of various MG systems
and the melting temperature [Tm(base)] of their base components
are then surveyed, and the data are listed in Table 1. Fig. 1 shows
the Tg vs. Tm(base) of various MGs listed in Table 1. One can see that
the Tg and Tm(base) do not show a clearly linear relationship, and this
indicates that unlike the moduli inheritance the Tg and Tm of the
base component in MGs have no clear correlation.

Based on the experiment data survey, it is reported that a linear
relationship between the Tg and the absolute value of the mixing
enthalpy DHchem for MGs can be described as [23]:

Tg � Ta þ kjDHchemj ð6Þ

where Ta and k are constants. To estimate the DHchem of the multi-
component MGs, the binary eutectic compositions are often used as
the starting points [18,24]. The two base elements in their binary
Table 1
The values of Tm(base), hTmi, and Tm(AxBy) for a variety of metallic glasses.

Composition of MG Tm(base) (K) hTmi (K) Tm(AxBy) (K)

Au49Ag5.5Pd2.3Cu26.9Si16.3 1337 1405 636
Au55Cu25Si20 1337 1412 636
Ca65Mg8.54Li9.96Zn16.5 1115 963 664
Ca55Mg25Cu20 1115 1115 718
Ca55Mg20Cu25 1115 1137 755
Ce70Al10Cu20 1072 1112 697
Ce68Al10Cu20Nb2 1072 1145 697
(Ce80La20)68Al10Cu20Co2 1072 1146 697
Cu60Zr29Ti10Sn1 1358 1630 1163
Cu60Zr20Hf10Ti10 1358 1676 1248
Cu50Hf43Al7 1358 1786 1253
Fe61Mn10Cr4Mo6Er1C15B6 1811 2254 1426
Fe70Mo5Ni5P12.5C5B2.5 1811 1791 1321
Gd40Y16Al24Co20 1586 1499 1148
Hf48Cu29.25Ni9.75 Al13 2423 1850 1243
La60Al20Co20 1193 1256 820
La55Al25Cu10Ni5Co5 1193 1200 823
Mg65Cu25Y10 923 1119 825
Mg65Cu25Tb10 923 1103 825
Mg64Ni21Nd15 923 1145 779
Nd60Al10Ni10Cu20 1283 1307 793
Nd60Fe20Al10Ni10 1283 1398 958
Ni45Ti20Zr25Al10 1726 1789 1343
Ni60Nb35Sn5 1726 2020 1539
Pd40Cu40P20 1828 1431 1051
Pd39Ni10Cu30P21 1828 1485 1051
Pd77.5Cu6Si16.5 1828 1780 1083
Pt60Ni15P25 2041 1563 861
Pt57.5Cu14.7Ni5P22.8 2041 1532 861
Sr60Li5Mg15Zn20 1050 930 642
Sr60Mg20Zn15Cu5 1050 986 699
Ti40Zr20Ni3Cu12Be20 1933 1724 1253
Ti50Ni24Cu20B1Si2Sn2 1933 1700 1250
Zr50Cu50 2128 1743 1201
Zr57Ti5Cu20Ni8Al10 2128 1813 1268
Zr41Ti14Cu12.5Ni10Be22.5 2128 1834 1238
Zr45Cu45Al7Gd3 2128 1682 1201
Zr46.75Ti8.25Cu10.15Ni10Be27.25 2128 1887 1238
Zr57Nb5Cu15.4Ni12.6Al10 2128 1870 1268
Au49Ag5.5Pd2.3Cu26.9Si16.3 1337 1405 636
eutectic or peritectic compositions always have a greatest contribu-
tion of mixing entropy for a multicomponent MGs. The close corre-
lation between the mixing enthalpy and Tg mainly depends on the
interaction intensity between the base binary eutectic compositions
for different MGs [23], this indicates that the Tg for various MGs
might be mainly contributed to the interaction intensity between
the two base components in their eutectic compositions in phase
diagram. The MGs are typically formed either by liquid quenching
near the deep-eutectic [19] or in the vicinity of multiple quasi-peri-
tectic points [25]. From these results, it is inferred that Tg have a
close relation with the interaction of two base elements in their
eutectic or peritectic compositions.
3. Results and discussions

To confirm the idea, the data of Tg from the literatures [20,26–
51], and the nearest eutectic or peritectic temperature [Tm(AxBy)]
of the two base elements A and B from their binary alloy phase dia-
gram [52] were collected, and the data are listed in Table 1. To
determine the Tm(AxBy), the following rules are followed: (1) for Cux-

ZryR1�x�yMGs (R is the third component), the Cu and Zr are two
dominant base components, and CuxZry has a nearest eutectic or
peritectic point in the Cu–Zr binary phase diagram. For example,
for Zr45Cu45Al7Gd3 bulk MG, its Tm(AxBy) is the eutectic temperature
in CuZr binary diagram at Cu 50% or 50% Zr (atomic fraction); (2)
for some MGs such as Pd40Cu30Ni10P20, their two base components
Pd and Cu have no eutectic or peritectic point in their binary phase
diagram, and then the temperature in the nearest eutectic point
(Pd66.7P33.3) in their Pd–P phase diagram as the Tm(Pd40P20) is used;
(3) for the MGs with several secondary base components which
have same corresponding stoichiometric compositions, The one
which has the highest mixing enthalpy with the base element is
chosen. The obtained values of Tm(AxBy) are also listed in Table 1.

Fig. 2 shows the relationship of Tg and Tm(AxBy) for 163 different
MGs including Au-based, Ca-based, Cu-based, rare earth-based, Fe-
based, Mg-based, Ni-based, Pd-based, Pt-based, Sr-based, Ti-based,
and Zr-based MGs. These MGs have markedly different glass-form-
ing ability, mechanical, chemical and physical properties (the elas-
tic moduli range from less than 20 GPa to more than 200 GPa, and
Tg ranges from 297 K to 891 K) [20,26–51]. Although the data are
from different literatures and were measured by different meth-
ods, it can be seen that the Tg and Tm(AxBy) show a clear linear rela-
tionship in a form of Tg = 0.55Tm(AxBy). Compare with the relation of
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Fig. 2. The correlation between the Tg and the temperature[Tm(AxBy)] of the eutectic
or peritectic point of two base elements in their binary phase diagram in MGs. They
show a linear relationship of Tg = 0.55Tm(AxBy). The statistical analysis R-square is
about 0.94.
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Tg and Tm(base) of base component as shown in Fig. 1, the Tg and
Tm(AxBy) presents a much better linear relationship, which reveals
the Tg of a MG mainly determined by the interaction intensity
between the two base components.

It has been reported that the Tg has a relationship with average
melting temperature [hTmi = Rfi(Tm)i] [10]. The relationship
between hTmi and Tg for these MGs is then also investigated, and
the relationship between Tg and hTmi are illustrated in Fig. 3. It
can be seen that the Tg and hTmi roughly follow the form of
Tg = 0.385 hTmi [11] but show a larger scattering compared
with that of Tg and Tm(AxBy) as shown in Fig. 2. For example, for
Au70Cu5.5Ag7.5Si17 [29] (as indicated in Fig. 3), its Tm(AxBy) is 636 K
and its hTmi is higher than 1200 K, while its Tg is 339 K lower than
the ultralow Tg systems of Ce- and La-based MGs which have the
lower hTmi. Therefore, in general, the Tg = 0.55Tm(AxBy) can more
accurately reflect the relationship between Tg and the components
in a MG, which is crucial for design a MG with desirable Tg. It is
noted that a good correlation between the glass transition temper-
ature and liquidus temperature in metallic glasses has also been
recently reported by other groups [53].

Near the compositions of eutectic and peritectic points, and the
temperatures, which are much lower than the pure element
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Fig. 3. The Tg vs. average melting temperature (hTmi) for the same MGs listed in
Figs. 1 and 2. The statistical analysis R-square is about 0.82.
melting temperatures of their components, are at the valleys in
phase diagrams. The correlation between Tg and eutectic and peri-
tectic temperature of the two base components indicates that the
two base components are solvent atoms in MGs, and the Tg is dom-
inated by the bonding forces among the two solvents [4,5]. The
results also indicate that the glass state to supercooled liquid state
transition can be regarded as the broken or bonded of the weakest
the solvent–solvent bonds among the solute-centered clusters in
the MG, and the MGs can be regarded to consist of the solute-
centered clusters, and the solvent atoms are mainly two base
components, and the other components are solute atoms. The sol-
vent–solvent junction bonding among the solute-centered clusters
determine the characteristics of the glass transition and Tg of a MG.
The correlation between Tg and eutectic and peritectic temperature
of the two base components might also indicate that the bonds bro-
ken in the process of glass transition and A and B base components
binary eutectic or peritectic melt is similar. This result may have
implications for understanding that the best glass-forming ability
is often near eutectic composition point.

4. Conclusions

The glass transition temperature of a variety of MGs shows a
heredity from the eutectic or peritectic point Tm(AxBy) which from
the binary phase diagram of two base elements in MGs. The Tg

and Tm(AxBy) have a linear relationship of Tg = 0.55Tm(AxBy). The cor-
relation or inheritance suggests that the glass transition mainly
determined by the solvent–solvent junction bonding among the
solute-centered clusters. The finding might offer a simple means
to predict and design MGs with desired glass transition tempera-
ture and properties.
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