
Origin of Intermittent Plastic Flow and Instability of Shear Band Sliding
in Bulk Metallic Glasses

B.A. Sun,1,* S. Pauly,1 J. Hu,2 W.H. Wang,3 U. Kühn,1 and J. Eckert1,4
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Intermittent or serrated plastic flow is widely observed in the deformation of bulk metallic glasses

(BMGs) or other disordered solids at low temperatures. However, the underlying physical process

responsible for the phenomena is still poorly understood. Here, we give an interpretation of the serrated

flow behavior in BMGs by relating the atomic-scale deformation with the macroscopic shear band

behavior. Our theoretical analysis shows that serrated flow in fact arises from an intrinsic dynamic

instability of the shear band sliding, which is determined by a critical stiffness parameter in stick-slip

dynamics. Based on this, the transition from serrated to nonserrated flow with the strain rate or the

temperature is well predicted and the effects of various extrinsic and intrinsic factors on shear band

stability can be quantitatively analyzed in BMGs. Our results, which are verified by a series of

compression tests on various BMGs, provide key ingredients to fundamentally understand serrated

flow and may bridge the gap between the atomic-scale physics and the larger-scale shear band dynamics

governing the deformation of BMGs.
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Despite different length scales and internal dynamics, a
variety of disordered materials ranging from granular
media and colloids to metallic glasses exhibit remarkably
similar shear localization and intermittent plastic flow
behavior when deformed at low temperatures [1–3]. In
view of the fundamental interest in the structure-property
relationships of disordered materials and their wide appli-
cations, there is a compelling need to identify the physical
processes underlying the plastic flow of these materials. At
atomic scale, the plastic flow of glassy materials is believed
to involve the local arrangement of atomic clusters that
undergo inelastic deformation [4–6], which is completely
different from dislocation-mediated plasticity in crystalline
solids. Several theoretical models including the free vol-
ume [7] and the shear transformation zone (STZ) theory
[8–10] were proposed over the years, providing a compre-
hensive interpretation to the plasticity of glassy materials.
Despite the success of these theories in understanding the
fundamental flow process and the rheological behavior
[11–13], demonstrating the macroscopic deformation
behavior with these microscopic theories still presents a
major challenge in glassy materials.

This dilemma particularly stands out in bulk metallic
glasses (BMGs), a new class of disordered materials that
have gained much attention owing to their attractive and
unique properties [14–16]. At temperatures far below the
glass transition, the plastic deformation of BMGs is well
known to be an inhomogeneous process with the plastic
strain highly localized into shear bands [17,18]. According
to the free volume approach or the STZ theory, this shear

localization can be illustrated as a spatial instability pro-
cess by a softening mechanism associated with structural
disordering or shear dilation, and once a shear band is
initiated, it will quickly reach a steady state with a largely
reduced viscosity [8,19]. However, in contrast to the pre-
diction, the intermittent shear banding process often
occurs, which is widely observed in load-constraint defor-
mation modes and manifested as serrated flow behavior in
the stress-strain curves [20–22]. Similar intermittent flow
behavior has also been reported for a variety of other
disordered materials [1–3]. Regarding the significant soft-
ening, it is difficult to understand why shear banding is
arrested and then reactivated during serrated flow.
Although some mechanisms have been suggested, includ-
ing nanocrystallization within shear bands [23] and
repeated shear-melting transition [24], the physical mecha-
nism of serrated flow, particularly from the fundamental
deformation process of BMGs, remains a mystery.
Furthermore, serrated flow shows a strong dynamic depen-
dence on the strain rate and the temperature, i.e., serrations
tend to be suppressed at high strain rates or low tempera-
tures and disappear at some critical values [25–28]. The
physical mechanism for the dynamic characteristic is also
poorly understood.
In this letter, we attempt to interpret the intermittent

plastic flow in BMGs by relating their atomic-scale defor-
mation process and macroscopic shear band behavior.
There are many theoretical models to describe the atomic-
scale deformation process of BMGs. Here, we use the
cooperative shearing model (CSM) of STZs recently
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proposed by Johnson and Samwer [10]. The CSM is mainly
based on the concept of inherent states and the potential
energy landscape [29] and considers that the mechanical
instability of a STZ is related with the stress-induced desta-
bilization of individual inherent state or local minima of
potential energy landscape in BMGs. Thus, a correlation
between structure of metallic glasses and their energetics
can be well established. According to the CSM, the poten-
tial energy barrier for the instability of a STZ is biased by an
applied shear stress. The inelastic strain rate for crossing the
barrier is expressed as:

_� ¼ _�s expð�W�=kBTÞ; (1)

where _�s is a characteristic strain rate, kB is the Boltzmann
constant, T is the temperature andW� is the energy barrier
to overcome at a finite shear stress �. From the Frenkel
scheme for shear deformation of dislocation-free crystals

and the catastrophe theory, it is easily shown that W� ¼
4RG0T�C

2½ð�C � �Þ=�C�3=2�� [10] whereG0T is the shear

modulus of the unstressed glass, �C � 0:027 and �C is the
critical yield shear strain and stress of a BMG, respectively,
� is the volume of a STZ, R � 1=4 and � � 2–4 are
constants. Thus, Eq. (1) in fact gives a constitutive descrip-
tion of the plasticity from the atomic-scale deformation
physics in amorphous solids. Following the CSM, the uni-

versal T2=3 temperature dependence of the yield strength in
BMGs has been well elucidated and the volume of STZs for
various BMGs can be experimentally characterized [30].

To relate the atomic-scale process with the macroscopic
deformation behavior, we consider the uniaxial compres-
sion of a BMG. In this case, most monolithic BMGs will
deform by the formation of a dominant shear band along
the principle shear plane, as shown in Fig. 1. The machine-
sample system (MSS) is loaded at a constant rate v0 from

the time t ¼ 0, and elastic energy is gradually stored in the
system providing the driving force �M�Sv0t=ð�M þ �SÞ
with �M and �S being the stiffness of the machine and the
sample, respectively. Once the sample is loaded up to the
yield stress, the major shear band will form. After activa-
tion, the band will quickly operate across the entire sample
and subsequent shearing proceeds in a cooperative manner
[22]. For a vertical plastic shear displacement x in the band,
the governing kinetic equation for the MSS is

�M�S

�M þ �S

ðv0t� xÞ � �d2

4
�b ¼ M €x; (2)

where d is the sample diameter, €x is the second time
derivative of x, and M is the effective inertia of MSS,
typically on the order of 10–100 kg [31]. �b is the internal
resistant stress of the shear band, which can be given by the
constitutive law of the BMG. Defining the elastic constant

k ¼ 4�M�S

�d2ð�M þ �SÞ
¼ E

Lð1þ SÞ ; (3)

where L and E are the height and Young’s modulus of the
sample, respectively, and S is defined by S ¼ �S=�M ¼
�d2E=ð4L�MÞ, Eq. (2) becomes

kðv0t� xÞ � �b ¼ m €x; (4)

with m ¼ 4M=�d2. Here, k and m can be regarded as the
stiffness and the inertia of the system per unit area, respec-
tively. From Eq. (4), one can see that the intermittent
sliding of shear band will cause flow serrations in the
load-displacement curve (Fig. S1 in the Supplemental
Material [32]). In a serration, the deforming band will
undergo negligible (v � v0) and rapid (v � v0) sliding
rates. As indicated in recent works [33], this behavior is a
typical stick-slip process [34,35], a phenomenon that has
been widely observed in a large number of systems ranging
in scale from atomic thin films to earthquake faults and
differing vastly in their internal physics. For BMGs with
multiple shear bands, similar stick-slip dynamic equations
could also be derived by considering the interplay between
shear bands [22,31].
In order to link the CSM with the stick-slip dynamics of

shear band, we view shear banding as a cooperative shear
of a thin layer where the constitutive deformation law can
be described by the STZ theory. Because of the small
thickness and extremely high strain rate in the shear
band, we assume that the strain rate _� in the band is
macroscopically homogeneous. Equation (1) can generally
give a constitutive relation of the strain rate as a function of
the applied shear stress � during the deformation of BMGs.
However, to fully describe the dynamics of shear band, we
note that _� is also a function of some state variable in
addition to the applied stress. Here, we use the concept of
the effective disorder temperature � proposed by Langer
[36] as the state variable in the band. In STZ theory, � is
used to characterize the state of configuration disorder and

FIG. 1 (color online). Schematic diagram of the machine-
sample system in the compression of BMGs where a dominant
shear band is formed. The shear banding can be viewed as
cooperative shear process of a collection of STZs, as shown in
the schematic atomic-scale process in the band.
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the density or the total number of STZs is proportional to
the Boltzmann factor expð�1=�Þ. As the macroscopic
strain rate _� in the band is proportional to two factors:
the strain rate of the individual STZ and the number of
STZs contained in the band, it can be expressed as _� ¼
expð�1=�Þfð�Þ with fð�Þ given by Eq. (1). � also evolves
dynamically with the strain rate during deformation. We
adopt a governing dynamic equation for � [37]:

_� ¼ _��

c0�C

�
1� �

�̂ð _�Þ
�
; (5)

where c0 is a constant, _�� is the energy dissipation term
when the plastic work is done on the system, �̂ð _�Þ is the
steady state value of �, which is a function of the plastic
strain rate. The �̂ð _�Þ can be given by �̂ð _�Þ ¼ �w= lnðqc= _�Þ
from simulation results of a glass [38], where qc is the
characteristic strain rate that the effective temperature
diverges and �w is the activation energy barrier which
determines the frictional rate dependence. If �w < 1, the
material is rate weakening which means that the steady-
state shear stress increases with strain rate. Here we assume
that �w < 1 always holds. As shown in Supplemental
Materials [32], this is the prerequisite for the instability
of steady shear band sliding to occur. Finally, the shear
stress � and the strain rate _� in the band are related to the
vertical stress �b and the sliding rate v by the geometrical
relations � ¼ �b sin	 cos	 and, _� ¼ v=ð
b cos	Þ, where 	
and 
b are the shear band angel and thickness, respectively.
Inserting these relations into the expression of _�ð�; �Þ and
rewriting it, we obtain a constitutive friction law of the
shear band:

�bðv0; �Þ ¼ �b0f1� ðkT=W0Þ2=3½lnðvs=vÞ � 1=��2=3g;
(6)

where �b0 ¼ 2�C= sinð2	Þ, vs ¼ _�s
b cos	, and W0 ¼
4RG0T�

2
C��. Thus, the sliding of shear band is analogous

to the solid friction process with a state variable friction
in the planar interface (Fig. S2 in the Supplemental
Material [32]).

With Eqs. (4)–(6), the stability of shear band sliding can
be analyzed. Apparently, Eq. (4) has a steady-state solution
xSS ¼ v0t� �SS

b ðv0Þ=k, where the shear band slides at

the constant loading rate v0, and �b and � reach their
steady values �SS

b ðv0Þ and �̂ðv0Þ, respectively. This corre-
sponds to the case of nonserrated or smooth flow in the
plastic stress-strain curve of BMGs usually observed at low
temperatures [25]. However, this steady sliding of shear
band is not always stable. We perturbed these solutions
and then performed linear stability analysis (see the
Supplemental Material [32]). The analysis shows that the
stability of the steady sliding is associated with a finite
critical stiffness kcr which is a function of the external
loading rate v0 and the temperature T:

kcrðv0; TÞ ¼ ��b0ðkBT=W0Þ2=3 lnðvc=v0Þ=C0; (7)

where vc¼qc
bcos	, C0 ¼ ð3=2Þc0
b cos	�
2
w=ð1� �wÞ

and � are constant factors. For k > kcr, the initial pertur-
bation on the steady shear band sliding will decay expo-
nentially with time and, consequently the steady sliding is
stable. Conversely, for k < kcr, the small initial perturba-
tion grows exponentially, leading to instability of the
steady sliding. As shown from numerical solutions on
the dynamic equations (see Figs. S4 and S5 in [32]), the
instability will finally develop into stable serrations with
fixed amplitude and duration. In this case, the calculated
stress drop amplitude and the incubation time for slip
events are found to be closely related to the ratio k=kcr,
which depends on various properties of BMGs as well as
the loading rate and the testing temperature. Hence, ser-
rated flow can be regarded as an intrinsic dynamic insta-
bility of the steady-state shear band sliding in BMGs.
According to Eq. (7), maps for the transition from

serrated to nonserrated flow in BMGs can be plotted as a
function of the loading rate v0 or the testing temperature T,
as shown in Fig. 2. One can see that kcr decreases loga-

rithmically with v0 for constant T or increases with T2=3

for constant v0. At k ¼ kcr, the transition occurs, where a
critical rate vcr or temperature Tcr can be found. For v0 >
vcr or T < Tcr, k > kcr, the steady sliding is stable and
hence nonserrated flow is observed. This explains experi-
mental observations that serrations tend to be suppressed at

 

kcr ~ ln(vc/v0)

crv v
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k
cr
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serrated flow non-serrated flow
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kcr
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kcr ~ T 2/3

v
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= constant

serrated flow

k
cr
>k

non-serrated flow

k
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FIG. 2 (color online). The transition map from serrated to
nonserrated flow at a constant temperature T (a) and a constant
loading rate v0 (b), respectively.
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higher strain rates or lower temperatures [25,26].
Combining Eqs. (3) and (7) and considering the relation
for the strain rate _" ¼ v0=L, one can obtain the critical
strain rate for the disappearance of serrated flow

_"cr ¼ _"c exp

�
� C0k

��b0

�
W0

kBT

�
2=3

�
; (8)

where _"c ¼ vc=L. As k ¼ E=½Lþ �d2E=ð4�MÞ�, one can
see that _"cr depends on the size and the Young’s modulus
of BMG samples as well as the testing temperature and
machine stiffness. Thus, Eq. (8) provides a quantitative
description on the dynamic transition of serrated flow and a
theoretical basis for analyzing the effects of extrinsic
(strain rate, sample size, etc.) or intrinsic (elastic modulus)
factors on serrated flow and shear band stability in BMGs.

To verify our predictions, we performed a series of com-
pression tests for various BMG samples with different sizes
and elastic constants as listed in Table SI [32]. The machine
stiffness �M in the present work is experimentally deter-
mined as 1:752� 107 Nm�1 (Fig. S6 [32]). Based on these
parameters, the values of k were calculated according to
Eq. (3) and are also listed in Table SI in the Supplemental
Material [32]. For each sample, the critical loading rate vcr

or, equivalently, the critical strain rate _"cr for the transition
from serrated to nonserrated flow can be experimentally
determined by varying the strain rate in the tests at a
constant temperature. The detailed procedure for determin-
ing the critical strain rate can be found in experimental
methods and Fig. S7 in the Supplemental Material. Here,
we choose T ¼ 218 K, as _"cr for most BMGs lie in the
quasistatic range at this temperature (see Table SI), where
serrations can be well resolved by our experimental setup
(Fig. S8). Figure 3 shows the transitionmap from serrated to
nonserrated flow where the critical strain rate vcr (within
the error range) versus k can be fitted well by Eq. (7)

with the fitting constant ðW0=kBTÞ2=3C0=��b0 ¼ 2:21�
10�4 mGPa�1 s�1 for various BMGs. Alternatively, the
critical strain rate also varies with the temperature T for a
given MG sample with fixed k. In this case, Eq. (8) is
reduced to a Super-Arrhenius relation

_"cr ¼ _"c exp½�QðTÞ=kBT� (9)

with the activation energy QðTÞ ¼ C0kW
2=3
0 ðkBTÞ1=3=

ð��b0Þ. Thus, the critical strain rate _"cr is inversely propor-

tional to the exponential form of T2=3. This temperature

dependence of _"cr obviously originates from the T2=3 de-
pendence of the yielding stress of BMGs in the CSMmodel
[10]. To verify this, we also performed compression tests on
a typical Zr65Cu15Ni10Al10 BMG sample (d ¼ 2 mm) at
different temperatures (T � 203–298 K). At each tempera-
ture, the strain rate was gradually varied so that the tran-
sition from serrated to nonserrated flow is revealed, as
shown in Fig. 4. One can see that the critical strain rate for
the transition can be well fitted by Eq. (9) with the fitting
activation energy QðTÞ in a narrow range of 0.53–0.58 eV
for T 203–263 K. Interestingly, a similar activation energy
(Q ¼ 0:37 eV) for the serrated to nonserrated flow transi-
tion has also been obtained in recent compression experi-
ments by Dubach et al. [25], where they fitted the data with
an Arrhenius relation. All these results strongly corroborate
our theoretical predictions and underpin the validity of the
stick-slip instability in describing the dynamic character-
istic of serrated flow in BMGs.
It should be noted that our model only considers the

stick-slip dynamics of one single shear band and the
prediction qualitatively agrees with the experimental facts
that most monolithic BMGs deform by a dominant shear
band where the serrations have a characteristic size [21].
For ductile BMGs, their serration sizes often follow a
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power-law distribution, indicating the shear band interac-
tion term or more degrees of freedom must be considered
in the stick-slip dynamics of multiple shear bands. This
may lead to the complex serrated events or self-organized
critical avalanche dynamics [22,39]. But the critical con-
dition for the instability should be the same as that of one
single shear band. That is, both are associated with a
negative strain rate sensitivity of the flow stress originated
from the microscopic deformation mechanism of BMGs.

To conclude, we give an interpretation on the intermit-
tent plastic flow behavior from the stick-slip shear band
dynamics and the atomic-scale CSM model in BMGs. The
good agreement between our theoretical analysis and the
experimental results unambiguously demonstrates that
the serrated flow is an intrinsic dynamic instability of shear
band sliding in BMGs. Finally, it should be pointed out that
intermittent plastic flow process has been widely observed
in other disordered material (granular media, colloids,
etc.), our theoretical method on the serrated flow in BMG
may also be useful in analyzing the shear stability and
dynamics of these disorder solids.
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