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Abstract

Starting from the nanoscale structural heterogeneities intrinsic to metallic glasses (MGs), here we show that there are two concurrent
contributions to their microscale quasi-static shear modulus GI: one (l) is related to the atomic bonding strength of solid-like regions and
the other (GII) to the change in the possible configurations of liquid-like regions (dynamic relaxation). Through carefully designed high-
rate nanoscale indentation tests, a simple constitutive relation (l = GI + GII) is experimentally verified. On a fundamental level, our cur-
rent work provides a structure–property correlation that may be applicable to a wide range of glassy materials.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Owing to their unique combination of mechanical/phys-
ical properties, metallic glasses (MGs) are considered to be
excellent candidate materials for structural and functional
use [1–6]. The great efforts dedicated to this field over the
past decades have revealed that many important attributes
of MGs, e.g. glass formation temperature, fragility, plastic-
ity, etc., can be correlated with their elastic properties. The
existence of these correlations is useful for the development
of new MGs [7,8]; however, on a fundamental level, it is
still not clear how the elastic properties of MGs can be cor-
related with so many important attributes, even including
those related to plasticity. In general, it is known that the
elastic moduli of solids are derived mainly from two fac-
tors: their atomic bonding strength and the possible relax-
ation spectra of their atomic structure. In crystals, the effect
of the former usually overwhelms that of the latter at low

temperatures; therefore, the quasi-static elastic moduli of
crystalline materials are mainly related to their atomic
bonding strength. By comparison, the shear moduli of
MGs depend on not only atomic bonding strength but also
structural relaxation. For example, previous experiments
demonstrated that the shear modulus in a MG alloy was
very sensitive to its thermo history, which could increase
by�30% after crystallization [8–12]. Furthermore, the prior
atomistic simulations and experiments also showed that,
even at low temperature, the elastic moduli of MGs are still
affected by the stress-induced configurational change in
their amorphous structure [13–16]. These previous findings
suggest that, under a mechanical loading or thermal treat-
ment, structural relaxation, as related to the configurational
variation in an amorphous structure, could play an impor-
tant role in determining the elastic moduli of MGs.

Recently, a number of experiments [17–20], consistent
with many prior numerical simulations [13–15,21], have
indicated that the structure of MGs is intrinsically heteroge-
neous in a dynamic sense, comprising liquid- and solid-like
regions at the nanoscale. In general, one may envisage that,
under a mechanical perturbation, the total deformation in
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an amorphous structure polarizes into the affine deforma-
tion in the solid-like regions and the non-affine deformation
in the liquid-like ones [13–15]. Before the occurrence of
overall yielding, the interplay between the two regions leads
to an anelastic response of MGs which can be rationalized
by a “core–shell” concept [17,19,20,22–25], as shown in
Fig. 1. Here, it should be emphasized that the core–shell ter-
minology currently used should not be misunderstood as
that for a real composite material. In reality, there is no
physical boundary that can be detected a priori for either
the core or shell region in an amorphous structure which
essentially has a continuous distribution of atomic packing.
However, the notion of the core–shell structure is appealing
to theoretical modeling, as seen below, and also useful for
picturing the topological relation between the regions
undergoing different types of deformations (affine vs. non-
affine).

Despite the lack of a well-defined physical boundary, the
“core” region may be loosely interpreted as the group of
atoms exhibiting a lower packing density [26,27], a lower
local modulus [28] or a higher energy dissipation rate
[18,20,29] than those in the “shell” region [17,18,28]. Under
a mechanical stress, the liquid-like cores may “evolve”

many times by altering their configurations, which, how-
ever, does not immediately cause the overall yielding of a
MG if the elastic shells are still interconnected [19,29]. This
contrasts the original ‘‘shear transformation zone (STZ)”
model [26], in which it was assumed that yielding is trig-
gered once the liquid-like region transforms irreversibly.
Following the core–shell concept, a dynamic structural
evolution process can be conceived for MGs which entails
many subcritical activation events in the apparent “elastic”

deformation regime as centered in the different liquid-like
cores. In this paper, we would like to show that, based
on this kind of understanding of structural heterogeneity,
i.e. the solid-/liquid-like regions [13–15,17–21,23,25], we

can arrive at a simple constitutive relation that is able to
correlate this nanoscale relaxation dynamics with the
microscale “quasi-static” shear modulus.

2. Theory

2.1. Statistical shear transformation (SST) in the core–shell

model

In principle, there could be two possible structural evo-
lution routes for the configurational transition in the
liquid-like cores, which are induced by an external stress
in the apparent “elastic” deformation regime. As shown
in Fig. 1a and b, one is due to the expansion of the existing
liquid-like cores (the circle region in Fig. 1b) and the other
to the successive activation of new cores (the rectangle
region in Fig. 1b). Whichever route is followed, however,
the overall effect of the structural evolution on a MG can
be idealized as that on the core–shell structural model from
a mean-field perspective, as shown in Fig. 1c. When sub-
jected to a shear stress s, the probability, p, of the liquid-
like core transiting from one configuration to another with-
out raising the total energy of the system can be derived as
[29]:

dp
dt
þ 2xpe�

DG
kT ¼ 2xe�

DG
kT

sX
kT

; ð1Þ

where x and DG denote the attempt frequency and energy
barrier of the core configurational transition, respectively, t

is the time, k the Boltzmann constant, T the ambient tem-
perature, and X the activation volume for the configura-
tional transition event. Now that the total strain c of the
core–shell structure depends on both the elastic (ce in the
“shell”) and inelastic (ci in the “core”) strain, it can be gen-
erally written as c ¼ cðce; ciÞ. Here ce ¼ s=l with l the
shell’s shear modulus, and ci ¼

R
dci with dci the incremen-

tal inelastic strain and scaling with the transition probabil-
ity dci � p [29]. Through the Taylor expansion, one can
obtain a linear relation for the above strains, which is
c � ce þ bdci or c � s=lþ bp, where the partial derivative
b ¼ @c=@ci measures the sensitivity of the total strain c to
its inelastic strain component ci. Substituting the above
derivation into Eq. (1), we obtain:

_cþ 2xe�
DG
kT c ¼ _s

l
þ 2xe�

DG
kT

bX
kT
þ 1

l

� �
s: ð2Þ

Now we obtain the constitutive relation, by taking the local
shear transformation in the apparent “elastic” regime as a
statistic activation process, which relates the applied shear
stress s and stress rate _s to the resultant shear strain c and
strain rate _c in a MG. Note that if the energy barrier of the
configurational transition is very high such that DG� kT,
these activation events could be severely suppressed
(e�

DG
kT � 0) and, in such a case, Eq. (2) is simplified to

_c ¼ _s
l, the commonly used relation for linear elastic solids.

To help reveal the physical significance of the different
terms in Eq. (2), it is worth mentioning that Eq. (2) is of

Fig. 1. (a) Schematic illustration of the zones of local heterogeneity being
activated under stress in MGs (the red regions represent the liquid-like
cores and the blue surroundings the elastic matrix); (b) illustration of the
evolution of the structural heterogeneity; (c) sketch of the core–shell
deformation unit in MGs; and (d) the three-parameter viscoelastic model
derived according to Eq. (2). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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the same form as the constitutive relation for a phenome-
nological three-parameter viscoelastic model, as shown in
Fig. 1d, which comprises a spring and a Maxwell unit con-
nected in parallel [30]:

_cþ GI GII

gðGI þ GIIÞ
c ¼ _s

GI þ GII
þ GII

gðGI þ GIIÞ
s; ð3Þ

where GI and GII denote, respectively, the shear modulus of
the springs connected in parallel and series with the dash-
pot with a viscosity g. Since Eqs. (2) and (3) are identical,
we have GII ¼ al=ð1þ aÞ, GI ¼ l=ð1þ aÞ, g ¼ al

2xe�DG=kT �ð1þaÞ2
and a = bXl/(kT). Here a = bXl/(kT) can be viewed as a
factor embodying the total effect of the aggregated liquid-
like cores, which increases with either the activation vol-
ume X or the sensitivity factor b. Here, it is worth mention-
ing that if a approaches infinity implicative of a completely
“liquidized” amorphous structure with broken elastic
shells, the three-parameter viscoelastic model would degen-
erate to the Maxwell model, which is the rheological model
commonly accepted for supercooled metallic liquids [31];
on the other hand, if a approaches zero, symbolizing a fully
“solidified” amorphous structure without any liquid-like
cores, the three-parameter viscoelastic model would degen-
erate to an elastic spring model. In that regard, the amor-
phous structure for the general case of a finite a can be
viewed as a “solid–liquid” composite owing to its mixed
viscoelastic response.

2.2. Configurational (entropic) dependence of shear modulus

Note that the above expressions for GI, GII and g could
have many important physical implications. However,
what we are interested in here is to explore the physical
meaning of GI, the quasi-static shear modulus obtained
at _c � 0. Through the rearrangement of the above expres-
sions, one can easily obtain a simple but rather intriguing
relation:

GI ¼ l� GII : ð4Þ
Here GII represents a “modulus” inherited mainly from the
liquid-like cores, which attains its maximum as a ap-
proaches infinity. In principle, for the same GI, there could
be many possible combinations of l and GII. Note that
Cheng and Ma derived a similar relation based on thermo-
dynamics in 2009 [13], which may be written as
GI ¼ Gp þ Gk � Ge. In this relation, Gp, Gk and Ge are all
positive numbers and represent the shear modulus derived
from the atomic potential, the atom kinetic energy and the
configurational entropy of the glassy system, respectively.
Through atomistic simulations, they further found that
Gk is negligibly small as compared to Gp and Ge [13]. In
such a case, we have GI ffi Gp � Ge. Comparing this rela-
tion with Eq. (4), one can recognize that, if taking l = Gp

and GII = Ge, the constitutive relation herein derived,
which is based on the concept of the statistical shear trans-
formation (SST) in an elastic shell, is equivalent to that de-
rived based on thermodynamics [13]. In other words, the

shear modulus due to the atomic potential, Gp, as defined
in Cheng’s work [13], can be ascribed to the atomic bond-
ing in the elastic shells, and the shear modulus due to the
configurational entropy, Ge, can be related to the enumer-
ation of the possible configurations of the liquid-like cores.
Therefore, from a theoretical viewpoint, the prediction of
our micromechanical modeling finds good agreement with
the prior atomistic simulations and thermodynamic theory.
Next, we would like to carry out experiments to directly
verify the above constitutive relation. Furthermore, if the
relation could be verified, we would like to address the fol-
lowing important questions: (i) what is the appropriate va-
lue for l? And (ii) how do GI or GII vary with the external
stimuli, such as stress or temperature, in line with the
change in the volume fraction of the liquid-like cores in a
MG alloy?

3. Experiment

To verify the above constitutive relations experimen-
tally, we employed a spherical indentation approach fea-
turing an asymmetric loading–holding–unloading profile,
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Fig. 2. (a) Sketch of the indentation load function, and (b) representative
nanoindentation P–h curves obtained at PH = 3200 lN, showing the
anelastic deformation in the MG. Note that the Hertzian curve
corresponds to the indenter tip radius of 5 lm, shear modulus (31 GPa)
and Poisson’s ratio (0.363) of Vit105.
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as shown in Fig. 2a. For comparison with the existing
experimental data, a Zr-based MG with the nominal com-
position of Zr52.5Ti5Cu17.9Ni14.6Al10 (Vit105) was selected
as the model material. Prior to indentation, the amorphous
structure of the sample was confirmed by the X-ray diffrac-
tion and differential scanning calorimetry (not shown) and
the sample surface was mechanically polished to a mirror
finish. The nanoindentation was subsequently performed
on the TI 950 TriboIndenter system (Hysitron Inc., Minne-
apolis, MN) with a 5 lm spherical indenter at room tem-
perature. During the experiments, indentations with the
holding load, PH, elevated from 400 to 4000 lN (as listed
in Table 1), were carried out. In virtue of the ultrafast data
acquisition capability (with a maximum of �30,000 points
per second) of the nanoindentation system, unusually high
loading rates could be achieved. To reveal the effect of
anelasticity, the loading time, tL, was systematically varied
from �100 to �10�3 s. In all of these tests, the holding
time, tH, and unloading time, tU, were both fixed at 0.1 s,
which sufficed to allow for the full recovery of the anelastic
deformation caused by the fast loading.

4. Results and discussions

4.1. Fitting of indentation load–displacement curve

Fig. 2b presents a set of nanoindentation load–displace-
ment (P–h) curves acquired at PH = 3200 lN. It is can be
seen that all P–h curves return to the zero displacement
after unloading, indicative of the elastic nature of the
deformation. For slow indentations (tL > 0.036 s), the
loading and unloading curves overlap and obey the Hertz-
ian theory; while for relatively fast indentations
(tL < 0.036 s), the loading curves depart from the Hertzian
theory and the extent of departure increases with the
decreasing tL, which conforms to the character of an
anelastic deformation. However, the anelastic deformation
is fully relaxed during the holding period, and therefore all
unloading curves collapse onto the same Hertzian solution.
A similar phenomenon was observed for other indentation
loads, ranging from 400 to 4000 lN. These experimental
observations are consistent with the theoretical modeling.

Following the integral transform method [23,32] (see
Appendix A), the loading curve of spherical indentation
can be easily derived in line with the three-parameter visco-

elastic model (Fig. 1d), which is hðtÞ3=2 ¼ 3P ðtÞð1�mÞ
8
ffiffi
R
p

GI

� 3 _Pð1�mÞGII tc

8
ffiffi
R
p

GI ðGIþGII Þ
1� exp � t

tc

� �h i
, where R denotes the inden-

ter tip radius, m the Poisson’s ratio, _P the loading rate and
tc the apparent relaxation time tc = g(GI + GII)/(GIGII) =
exp[DG/(kT)]/(2x). For simplicity, m is assumed to be a
constant in deriving the P–h relation for the three-parame-
ter model. Through nonlinear data fitting, the three
unknown viscoelastic properties, i.e. GI, GII and g, can be
extracted from the experimental loading curves (see
Appendix B). In turn, l, tc and bX can be obtained accord-
ingly with T = 293 K (the ambient temperature). These
fitted values are averaged at each indentation load and
tabulated in Table 1.

Fig. 3a shows a comparison of the experimental and the-
oretical loading curves at PH = 3200 lN, from which it can
be seen that the model captures the experimental data very
well. Here, it is worth mentioning that GII and g at 400,
600, 800 and 1600 lN cannot be fitted directly using the
three-parameter viscoelastic model. Instead, the viscoelas-
tic behavior of the MG at these small loads is akin to the
Kelvin model, which is the special form of Eq. (2) for
_s � 0. Mechanistically, if the deformation in the spring
GII relaxes with time so fast that its presence cannot be
detected experimentally, the spring GII may be regarded
as a rigid body, and thus the three-parameter model will
degenerate to the Kelvin model. To facilitate the flow of
discussion, the details of the model degeneration are dis-
cussed in Appendix B and are omitted here for brevity.

4.2. Invariant vs. variant shear modulus

Fig. 3b displays the variation of l with the indentation
load and loading time. Interestingly, the ls appear to be
a constant regardless of the loading condition. By compar-
ison, the obtained GI stays very stable at �33 GPa when
the indentation loads are less than �1600 lN, which is very
close to the room-temperature shear modulus of Vit105
(31 GPa) measured by the ultrasonic method [8]. However,

Table 1
The calculated parameters in the anelastic model for Vit105 MG at different loads. The GII and bX at the four lower loads (in parentheses) are calculated
according to GI ¼ l� GII and GII ¼ al=ð1þ aÞ, with l = 39.6 GPa. Here kT is used as the unit of DG.

Load (lN) l (GPa) GI (GPa) GII (GPa) bX (10�5 nm3) g (MPa s) tc (ms) DG (kT)

400 – 33.4 ± 2.4 (6.2) (1.89) 9.07 ± 1.40 0.32 ± 0.07 22.6 ± 0.3
600 – 34.1 ± 1.2 (5.5) (1.63) 9.18 ± 1.11 0.34 ± 0.05 22.6 ± 0.2
800 – 32.4 ± 0.9 (7.2) (2.29) 8.47 ± 0.95 0.29 ± 0.03 22.5 ± 0.1

1600 – 32.6 ± 0.6 (7.0) (2.18) 8.24 ± 1.50 0.24 ± 0.04 22.3 ± 0.2
2000 39.7 ± 2.4 30.4 ± 0.3 9.3 ± 2.4 3.07 ± 0.61 22.9 ± 3.3 3.4 ± 0.9 24.9 ± 0.3
2400 39.5 ± 1.8 30.8 ± 0.3 8.7 ± 1.8 2.86 ± 0.45 20.5 ± 2.1 3.1 ± 0.5 24.8 ± 0.2
2800 40.0 ± 1.7 30.0 ± 0.3 10.0 ± 1.7 3.37 ± 0.42 23.9 ± 3.8 3.2 ± 0.3 24.9 ± 0.1
3200 39.6 ± 2.0 30.1 ± 0.2 9.5 ± 2.0 3.19 ± 0.51 24.5 ± 3.9 3.5 ± 0.7 24.9 ± 0.2
3600 39.4 ± 3.1 29.8 ± 0.3 9.6 ± 3.1 3.25 ± 0.75 23.4 ± 4.9 3.4 ± 0.9 24.9 ± 0.2
4000 39.5 ± 2.6 28.2 ± 0.3 11.3 ± 2.6 4.06 ± 0.65 32.2 ± 3.9 4.1 ± 0.6 25.1 ± 0.1
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as the indentation load exceeds 1600 lN, GI reduces as the
indentation load rises. These findings imply that, during an
“elastic” loading, the elastic matrix (shells) of the MG
remains largely undamaged; however, the volume fraction
of the liquid-like cores may still grow once the applied load
reaches above a certain threshold even though this growth
is limited and does not break down the elastic matrix of the
amorphous structure.

As seen in Fig. 4a, l attains the average value of
�39.6 GPa regardless of the indentation loads. This value
is almost identical to the shear modulus (�39.2 GPa) of
the devitrified MG, which can be estimated by taking the
shear moduli of the constituent metallic elements [33] into
the “rule of mixture” [8]. Note that this finding is consistent
with our assumption that l is the modulus derived from
atomic bonding, which should be independent of the
mechanical history of the alloy, and also with the results
obtained by Cheng et al. through their atomistic simula-
tions in 2009 [15]. On the other hand, the same finding
can have an interesting implication for the maximum shear
modulus attainable to a MG alloy. According to Eq. (4), GI

could increase if the liquid-like regions can be reduced, say,
by thermal annealing; however, the maximum of GI should

be capped by the devitrification limit. Theoretically, this
annealing effect can be presented as the curve of GI vs.
a�1, as shown in Fig. 5a. Here the reciprocal of a is used
such that the direction of the abscissa conforms to the time
lapse in an isothermal annealing experiment. In Refs.
[34,35], the shear modulus of the Vit1 MG was measured
after thermal annealing to various degrees but with its
amorphous structure being preserved [8]. As shown in
Fig. 5b, the relative increase in the experimentally mea-
sured shear modulus increases with annealing time but it
is capped by a limit of �25%. Comparing Fig. 5a and b,
it is evident that our model predicts this limit of modulus
increase in excellent agreement with the available experi-
mental data; meanwhile, it also yields the similar trend of
the annealing effect despite the use of the different reference
parameters, i.e. a�1 in Fig. 5a and the annealing time in
Fig. 5b. Albeit qualitative, we believe that this similarity
between the two trends (Fig. 5a and b) warrants future
work that may deepen our understanding of the annealing
effect on a quantitative basis.

4.3. Dynamics of structural evolution in apparent elastic

regime

Next, let us discuss the stress-induced dynamics of the
structural evolution that underpins the variation of GI.
As seen in Table 1, the activation energy, DG, against the
local configurational transition in the liquid-like cores
can be estimated, which is within the range of �22–25 kT

(�0.55–0.65 eV) according to our experiments. This level
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of activation energy is comparable to that (�0.3–0.5 eV) of
the internal friction measured for the Zr-based MGs in the
temperature range of �150–250 K [36], but lower than the
activation energy against a typical STZ event (�26kTg or
�1 eV) as estimated using the cooperative shear model
[37,38]. Note that the activation energy of a similar level
(�0.5 eV) was also found experimentally by Schall et al.
at room temperature for a single shear transformation
(ST) event in the colloidal glass [39]. This suggests that,
in contrast to the cooperative ST events one may encounter
at the yielding point [37,38], the dynamic structural relaxa-
tion detected in this study is due to the activation of many
single (or isolated) ST events homogeneously distributed
within the sample volume during the apparent elastic
deformation of the MG.

Aside from the activation energy, the variation in the
activation volume can also be inferred from our experi-
ments. However, only the combined term bX can be
extracted herein. Since b measures the sensitivity of the
total strain to its inelastic strain component, the higher
its magnitude, the more liquid-like is the deformation
behavior of the core–shell unit. As such, the variation in

bX can reflect the change in the volume fraction of the acti-
vated liquid-like regions in the MG. As shown in Fig. 4b, at
an indentation load less than 1600 lN, which corresponds
to the mean shear stress of �60% of the overall yielding
stress, sy, of Vit105, bX fluctuates in the vicinity of
2 � 10�5 nm3, implying an insignificant change in the vol-
ume fraction of the liquid-like cores. This activation pro-
cess corresponds to a constant energy barrier
DG � 22 kT, as shown in Table 1. By comparison, when
the indentation load exceeds 1600 lN, DG rises to a higher
level � 25 kT and, meanwhile the term bX starts to increase
with the indentation load. These results suggest that the
activation energy against the configurational transition in
the liquid-like cores could be elevated as their volume frac-
tion increases. To rationalize these results, there are two
possible explanations. First, there could be a rather broad
distribution of the energy barrier against the thermally acti-
vated processes, according to the molecular dynamics sim-
ulation of Rodney and Schuh [40]. In such a case, it is likely
that most of the activation processes triggered at a low
indentation load possess a low energy barrier, as opposed
to these high-energy-barrier events triggered at a higher
indentation load. As a result of these successive activation
processes, the number of the activated liquid-like regions
increases with the load. Alternatively, the rise of the energy
barrier could be due to the expansion of the activated
liquid-like cores. As seen in the recent atomic force micros-
copy (AFM) images [18,20,28], such as Fig. 6a, which
shows the energy dissipation map obtained from a Zr–Ni
MG thin film [20], there are no sharp boundaries that
can separate different deformation regions in a MG alloy
(the inset of Fig. 6a), in line with a continuous distribution
of atomic packing in an amorphous structure. In that
regard, it is possible that the atoms enveloping a liquid-like
core, which behave elastically at a small load, can be turned
to liquid-like after their local packing environment is
destroyed at a high load (Fig. 6b). Consequently, this also
raises the energy barrier against the subsequent local struc-
tural transition as well as the volume fraction of the liquid-
like regions. Unfortunately, we are not sure at the moment
which mechanism is responsible for our experimental find-
ing, and it is also possible that both are active during our
indentation test. Finally, we should emphasize that, given
the limitation of our current work, we cannot further raise
the indentation load beyond �4000 lN, at which the corre-
sponding mean indentation shear stress is �750 MPa or
�0.75sy. When the indentation load is above that value,
displacement pop-in or shear instability appears, thus
invalidating the mean-field modeling.

5. Effects of fast vs. slow dynamic relaxation

So far, our analyses and discussions have been based on
the “core–shell” concept. Since both regions in MGs are
structurally amorphous, one legitimate question would be
why some regions behave as elastic shells while others as
viscous cores. As mentioned earlier in the introduction,

Fig. 5. (a) Variations of the GI and the ratio (GI–G0)/G0 with 1/a predicted
according to the relations GI = l/(1 + a) and l = 39.6 GPa (note that the
reference modulus G0 is here taken to be 32 GPa); and (b) the variation of
the relative increase in GI with annealing time experimentally measured for
Vit1. The experimental data are taken from Ref. [8] and G0 here denotes
the shear modulus before thermal annealing.
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the core–shell notion is more conceptual than physical and
the distinction between the two kinds of regions is only an
after-effect of mechanical deformation. According to
Tanaka et al. [41], the phenomenon of glass transition is
not only a dynamic slow-down of all constituent elements
but also the percolation of “slow” regions in a supercooled
liquid. If that was the case, the shell-regions we defined
may be interpreted as those with a much longer relaxation
time and thus higher viscosity than the core-regions. There-
fore, they appear to be elastic simply because the external/
experimental time scale is set much shorter than the inter-
nal/relaxation times of these regions.

Following this line of reasoning, one may naturally ask
how one could distinguish a “quasi-static” process from a
dynamic one given that there has been an increasing
research interest recently in understanding the elastic
behavior of MGs, particularly at the small length scale
[42]. After all, the “elastic” shell could even flow at a small
stress if one could wait for a long time. To address that

question, it is worth mentioning the creep tests performed
by Ke et al. [43]. Their results show that, after loading a
MG sample in its apparent elastic regime and waiting for
tens of hours, there could be a very small (<1%) but detect-
able decrease in its quasi-static shear modulus. Based on
the findings of Ke et al. [43] and the current study, we
may draw a schematic (Fig. 7) showing the effects of the
different dynamic relaxation processes on the apparent
shear modulus of a MG, which could be determined readily
from the slope of the linear portion of a stress–strain curve.

As shown in Fig. 7, for the case of an instant stepping
load, the apparent shear modulus would appear to be l,
the one determined by the bonding strength in a MG; if
the experimental time scale is within 10�4–10�3 s, the
apparent shear modulus decays rapidly from l to GI as a
result of the configurational transition in the liquid-like
cores, as seen in Fig. 2b. The resultant viscosity estimated
from g = tRGI would range from 107 to 108 Pa s in accord
with this behavior of anelasticity. On the other hand, if the
experimental time is set on the order of �105 s, a slight
decrease (<1%) in the quasi-static shear modulus could
be witnessed due to the slow relaxation in the shell regions
[43]. Similarly, the viscosity for the slow relaxation process
could be also estimated, which is �1015 Pa s and 7–8 orders
of magnitude higher than that for the fast relaxation pro-
cess. In view of such a large discrepancy between the two
extreme time scales, a quasi-static process is well defined
in between, as is the case for most mechanical tests
reported in the literature.

6. Summary

In summary, the structural origin of the shear modulus
and the underlying structural evolution process in MGs is
elucidated. Consistent with the notion of intrinsic struc-
tural heterogeneity in MGs, here we show that there are
two concurrent contributions, i.e. bonding strength and

Fig. 6. (a) AFM structure image of the Zr–Ni MG thin film obtained
through the mapping of anelastic energy dissipation (inset: the continuous
distribution of the normalized energy dissipation). Note that the analysis
of the AFM data is detailed in Ref. [20]. (b) Schematic illustration of the
structural hierarchy around a liquid-like region (red sphere = loosely
packed atom, orange sphere = less loosely packed atom, pink sphere = -
less densely packed atom, and blue sphere = densely packed atom). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Schematic illustration of the rate dependence of the shear modulus
of a MG alloy in different relaxation regimes: fast relaxation leads to the
rapid decay of the apparent shear modulus from l to GI within the time
scale of 10�4–10�3 s while the slow relaxation results in a slight decrease in
GI within the time scale of �10 h [43]. Note that the trend of the rate
dependence could be shifted by the external loading as shown by the
dotted curve (e.g. Fig. 4a).
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configurational transition (or fast dynamic relaxation), to
their quasi-static shear modulus. The key findings of the
current work are listed as follows:

(i) The shear modulus of a MG has two contributing
terms: one is related to the atomic bonding (energy)
and the other to the configurational transition of a
glass (entropy). For the Vit105 MG, the energetic
modulus (�40 GPa) is equivalent to the composi-
tional average of the moduli of all constituent ele-
ments; while the configurational or entropic
modulus (�6–10 GPa) varies with mechanical loads
even in the elastic regime. The ratio of the two is
�15–25% and roughly equals the gap between the
shear moduli of the amorphous and corresponding
crystalline alloys [8].

(ii) The volume fraction of the activated liquid-like cores
in the Vit105 MG increases remarkably only after the
external load is increased above �60% of the yielding
load. Accordingly, the relaxation times and activa-
tion energies of the subcritical transition events are
elevated from �0.3 to �3 ms, and �0.55 to
�0.65 eV, respectively. Note that the activation ener-
gies are consistent with that estimated for a single ST
event in a colloidal glass [39], and also with the early
measurement of the internal friction in Zr-based
MGs [36], but only half of the energy barrier
(�1–2 eV) against cooperative ST events that lead
to the overall yielding in MGs [37].

(iii) Our findings also indicate that the apparent shear
modulus of a MG alloy is strongly time dependent
in the fast relaxation regime (10�4–10�3 s) and after-
wards decays to its quasi-static value, which would
remain stable until the MG alloy enters into the slow
relaxation process on the time scale of �105 s inferred
from the prior data [43].

Finally, we would like to point out that, since the defor-
mation heterogeneity as manifested by the solid- and
liquid-like regions is not specific to MGs but also applica-
ble to other amorphous materials, such as colloidal glasses
[39], granular matters [44] and glassy polymers [45], the
proposed theoretical and experimental framework is
expected to be also useful for a wide range of amorphous
materials of great technological importance.
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Appendix A. Derivation of time-dependent P–h relation

The P–h relation for an elastic contact in the spherical
nanoindentations can be expressed by the Hertzian theory
[23]:

h3=2 ¼ 3P ð1� mÞ
8
ffiffiffi
R
p

G
; ðA1Þ

where R is the indenter tip radius, m and G denote the Pois-
son’s ratio and shear modulus of the material, respectively.
According to the integral transform method [32], after the
Laplace transform of the parameters in Eq. (A1), there is

ĥ3=2 ¼ 3bP ð1�mÞ

8
ffiffi
R
p bG , where ĥ, bP and bG are the Laplace-trans-

formed displacement, load and shear modulus, respec-
tively. Here we assume that the Poisson’s ratio remains
constant before and after the Laplace transform.

The Laplace-transformed shear modulus for the three-
parameter anelastic model is expressed as:

bG ¼ ðGI þ GIIÞ �
G2

II=g
sþ GII=g

: ðA2Þ

Therefore,

ĥ3=2 ¼ 3bP ð1� mÞ
8
ffiffiffi
R
p A; ðA3Þ

where A ¼ 1
GIþGII

½1þ
G2

II
gðGIþGII Þ

sþ GI GII
gðGIþGII Þ

	.

Applying the inverse Laplace transform, we have:

h3=2 ¼ 3ð1� mÞ
8
ffiffiffi
R
p
ðGI þ GIIÞ

Pþ
Z t

0

P ðsÞf ðt� sÞds

� �
; ðA4Þ

wheref ðtÞ ¼ 1
2pi

R aþi/
a�i/

G2
II

gðGIþGII Þ

sþ GI GII
gðGIþGII Þ

est ds ¼ G2
II

gðGIþGII Þ e
� t

tc ; and

tc ¼ gðGIþGII Þ
GI GII

. As such, we obtain the P–h relation for the

loading process of spherical nanoindentations for the

anelastic material depicted by the mechanical model shown

in Fig. 1d:

h3=2¼ 3ð1� mÞ
8
ffiffiffi
R
p
ðGI þGIIÞ

Pþ G2
II

gðGI þGIIÞ

Z t

0

PðsÞe�t�s
tc ds

� �

¼ 3PðtÞð1� mÞ
8
ffiffiffi
R
p

GI

� 3 _P ð1� mÞGII tc

8
ffiffiffi
R
p

GIðGI þGIIÞ
1� exp � t

tc

� �� �
: ðA5Þ

Appendix B. Data fitting and anelastic model degeneration

In slow indentations, such as tL > 0.036 s in Fig. 2b, the
second term on the right-hand side of Eq. (A5), which is
closely related to the liquid-like cores, is small and can be
neglected. Consequently, the P–h relation recovers to the
Hertzian solution, i.e. h(t)3/2 = 3P(t)(1 � m)/(8GIR

1/2), as
consistent with our experimental results. Thus GI can be
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firstly obtained via fitting the loading curves in slow inden-
tations. For each load, at least 10 loading curves with
tL P 0.1 s were fitted and the average value is listed in
Table 1. With the known GI, then GII and g at each load
above 1600 lN were extracted by fitting the loading curves
that deviate significantly from the unloading curves with
Eq. (A5). The other parameters for each indentation with
PH > 1600 lN, i.e. l, tc and bX, were then computed
according to GI ¼ l� GII , tc ¼ gðGI þ GIIÞ=ðGI GIIÞ and
GI ¼ l=ð1þ aÞ, respectively, with T = 293 K.

When fitting the anelastic indentation curves with
PH 6 1600 lN using the three-parameter model, the fitted
GII’s tend to be infinitely large, implying that the three-
parameter model degenerates to the Kelvin model
(presented in Fig. B1a) at these low indentation loads. To
explain this, it needs to be remembered that the three-
parameter model (Eq. (2)) is derived by assuming that
the external stress could be ramped up with time in a con-
tinuous manner. However, in real mechanical tests, the

applied load always steps up incrementally. As illustrated
in Fig. B1b, there is a time interval, tS, before each load
increment can be added to the material. The maximum
data acquisition rate of our indentation system (30,000
points per second) sets the limit of 0.033 ms for tS.

As shown in Fig. B1b, when an stress increment, Ds, is
exerted onto the three-parameter model at the time t0, an
instantaneous strain increase, Dc0, will be produced in the
spring GI and GII, and, therefore, we could have
Ds ¼ Dc0ðGI þ GIIÞ at t = t0. However, as the time lapses
(t0 < t < t0 + tS), the dashpot starts to deform and hence
the strains in the springs are redistributed. Keeping Ds to
be a constant, we have:

Ds ¼ Dc � GI þ Ds2; ðB1Þ
where Dc is the strain increment in the whole model after
relaxation, and Ds2 is the stress increment born by the
Maxwell unit:

Ds2 ¼ g �
dðDcgÞ

dt
¼ DcII � GII ; ðB2Þ
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Fig. B1. (a) Sketch of the Kelvin model, (b) schematic illustration of the
discrete load stepping process (tS is the time lapse for the indentation
system to execute one load increment DP (or one stress increment Ds)),
and (c) illustrated variations of Dc and DcII with time for the cases of a
high indentation load (PH > 1600 lN, the solid lines) and a low inden-
tation load (PH 6 1600 lN, the dashed lines). The arrows indicate the
times, tR-1 and tR-2, for the full recovery of the anelastic deformation in the
above two cases, respectively.
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Fig. B2. The recovery of the anelastic deformation of the Vit105 MG as
measured during the holding process at (a) PH = 3600 and 4000 lN, and
(b) PH = 600 and 800 lN. th is the holding time and the arrows mark the
full recovery of the anelastic deformation.
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where Dcg and DcII are respectively the strain increment in
the dashpot and spring GII. Combining Eqs. (B1) and (B2),
we obtain:

dðDcIIÞ
dt

¼ � GI

GII
� dðDcÞ

dt
; ðB3Þ

which gives the relation between the time rates of the
change of the strain increment in the whole model and that
in the spring GII during each load stepping.

As mentioned in Section 4.1, the anelastic deformation
exhibited during the fast loading can be fully relaxed after
the holding process. Fig. B2a and b displays the recovery of
the anelastic deformation in the MG for the holding time
tH = 0.1 s at different load levels. From these curves, it is
clear that the time (tR), which the MG needs for a full
recovery at a constant load, is �1.5 ms at the high loads
and �0.3 ms at the lower loads. According to the fitting
results, the ratio of GI/GII ranges from 3 to 5. Therefore,
it can be inferred from Eq. (B3) that the strain in the spring
GII decays very fast and the rate is about 3–5 times that for
the strain increase in the spring GI. Note that the nanoind-
enter only records the displacement at the end of each load
increment. Hence, when DcII diminishes to a level below
the resolution of the testing machine, Dcc, the strain in
the spring GII cannot be detected experimentally. In other
words, the material appears to behave as a Kelvin model
due to the fast decay of the strain in the spring GII. To illus-
trate this idea, Fig. B1c presents a schematic about the
variations of Dc and DcII with time for the case of a high
and low indentation load. As shown by this figure, given
the same machine limits Dcc and ts, the presence of the
spring GII is more likely to be revealed at a high indenta-
tion load and a large relaxation time than at a low inden-
tation load and a small relaxation time.

According to the Kelvin model, the P–h relation for
spherical indentation is given below [23]:

hðtÞ3=2 ¼ 3PðtÞð1� mÞ
8
ffiffiffi
R
p

GK

� 3 _Pð1� mÞtc

8
ffiffiffi
R
p

GK

1� exp � t
tc

� �� �
; ðB4Þ

where GK (� GI) denotes the shear modulus of the spring,
and tc = g/GK. Using Eq. (B4), g and tc could be backed
out by fitting the fast-rate loading curves, and their aver-
aged values are listed in Table 1. Similarly, tc in the Kelvin
model can be related to the energy barrier and attempt fre-
quency [29] through tc = exp[DG/(kT)]/(2x). Since these
subcritical activation events are rather localized [29], X
should be on the order of an atomic volume and thus x
be close to the Debye frequency (�1013 Hz). With these
considerations, different DG’s can be computed according
to tc = exp[DG/(kT)]/(2x) and their averaged values are
also shown in Table 1.
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