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We develop a quantitative analysis of how the plastic deformation in a metallic glass is more uniform if

its Poisson ratio n is higher. The plasticity of metallic glasses under ambient conditions is mediated by

shear localized in thin bands, and can be characterized by experiments on the bending of thin plates.

We extend the analysis by Conner et al. (Conner et al., J. Appl. Phys. 94 (2003), 904–911) of bands in bent

plates to include the micromechanics of individual shear bands. Expressions are derived for the shear-

band spacing and the offset on each band. Both these quantities are predicted to decrease as n is

increased. The predictions are tested against measurements on metallic glasses with a wide range of n.

Good agreement is found, supporting the new model for the shear-band spacing, and pointing the way

towards more diffuse deformation, and consequently improved plasticity and toughness, of metallic

glasses as n increases toward the limiting value of 0.5.

Crown Copyright & 2012 Published by Elsevier B.V. All rights reserved.
1. Introduction

In metallic glasses (MGs), many atomic-level shear transforma-
tion zones are activated under stress, and the initial deformation is
uniform. Soon, however, the deformation localizes into rather few
macroscopic shear bands (SBs) that lead to catastrophic failure
[1–4]. This shear localization is a key factor limiting the wider
application of MGs, which otherwise can have attractive mechanical
properties. There is much active research on making the plastic
deformation more uniform by increasing the population density of
SBs. The bending of thin plates is particularly useful for studies of
SBs and their spacing, since the propagation of SBs stops as they
approach the neutral plane and early catastrophic failure is avoided,
permitting substantial deformability when the samples are suffi-
ciently thin [5–8]. Bending experiments are also directly relevant for
such applications as MG foams [9,10] and coatings [11].

Noting that resistance to plastic shear is proportional to the
shear modulus m, and that resistance to dilatation and cracking is
proportional to the bulk modulus B, Pugh [12] in surveying
polycrystalline metals suggested that the ratio m=B should corre-
late with the degree of plasticity or brittleness. A low value of m=B,
equally expressed as a high value of Poisson’s ratio n, favours
012 Published by Elsevier B.V. All
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plasticity. The link between n and plasticity was noted for metallic
glasses by Chen et al. [13], and was explored quantitatively by
Lewandowski et al. [14], who found a sharp transition: Metallic
glasses show significant toughness only when n exceeds a critical
value of 0.31–0.32. This has excited interest in tuning composi-
tions to increase n, and in this way many tough bulk MGs have
been realized [15–17].

While the critical value of n separating plastic and brittle
behaviour is important, it is equally of interest to consider the
extent of plasticity. Indeed, in Pugh’s survey [12], none of
the polycrystalline metals failed by truly brittle fracture, and
the point of interest was the correlation of n with the extent of the
plastic range. In the present work we extend considerations of
this type to metallic glasses. We explore their plasticity when n
exceeds the critical value noted above. The study by Lewandowski
et al. [14] suggests that away from the plastic-brittle transition,
the toughness continues to rise as n rises. Demetriou et al. [17]
have shown that a metallic glass with a particularly high n is
tougher than any other. But quantification of the rôle of n has so
far been lacking.

For polycrystalline metals, quantitative analyses [18,19] fol-
lowing Pugh [12] consider the stress state at a crack tip and the
local conditions for spontaneous emission of dislocations. In
metallic glasses, in contrast, plasticity is mediated by the shear
bands. Their spacing is of particular interest and, as seen in the
work of Demetriou et al. [17], is very fine (i.e. the deformation is
more uniform) when n is high. The degree of plasticity of metallic
rights reserved.
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glasses is dependent on sample size [20–22], and many aspects of
this were analysed in the important study by Conner et al. [5],
who derived expressions for shear-band spacing l and shear
offset Du in bent plates. They found that both l and Du depend,
among other factors, on n. While adopting the essential elements
of the analysis by Conner et al. [5], we now refine the derivation
of l, explore further how l and Du depend on n, and test these
predictions against observations on bent plates.
2. Theoretical analysis of shear-band spacing

While following the analysis by Conner et al. [5], we abandon
the assumption of isotropic yielding that is usual in such analyses
[5–7]. We derive the stress and strain induced by individual SBs
and apply a fully self-consistent approach to derive the most
probable SB spacing. We focus on the deformation typical of small
MG plates under bending (Fig. 1a), showing an array of SBs that
have a characteristic angle y with respect to the neutral plane of
the bent plate. Such an array of SBs, with spacing l, is geome-
trically necessary to accommodate the applied strain. The SBs are
analogous to mode II cracks (and indeed their evolution into
cracks may be important in analysing the onset of brittle fracture)
[5–7].

We define reference axes (x, y, z) as in Fig. 1b. Taking the shear
offset on a SB to be Du, the net axial extension or contraction from
a symmetric pair of SBs is 2Ducosy (Fig. 1b). For most MGs under
simple tension, y is slightly greater than 451. For small deforma-
tions, the axial strain ex can be decomposed into elastic and
plastic components, ee

x and ep
x :

ex ¼ ee
xþe

p
x ð1Þ

The distribution of axial stress sx through the thickness of the
bent plate has the same form as ee

x (Fig. 1c).
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Fig. 1. The bending of a thin metallic-glass plate. a,b, the pattern of primary shear bands

with the neutral plane. (c) The strain distribution ex through a plate of thickness H¼

discrete SBs gives a stress distribution differing from that if isotropic yielding is assume

of the linear correspondence between these two. d, The competition between strain ene

than the maximum critical value of l, varying with y according to Eq. (12)). These two fa

(For interpretation of the references to color in this figure legend, the reader is referre
Assuming that the strain field around a SB is the same as for a
mode II crack, the offset at a SB in a bent plate of half-thickness h

is given by:

Du¼
ð1�2nÞ
ð1�nÞsiny

a
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ðy�hÞ2

q
if ðh�aÞoyrh

0 if 0ryo ðh�aÞ ,

8<
: ð2Þ

where R is the bending radius, and a is the projected length of
the SB on the y-axis (Fig. 1c). Please see the Appendix for the
derivation of Eq. (2), which starts from the analysis by Conner
et al. [5]. Taking the geometry in Fig. 1b, we can express the
plastic strain associated with each shear band as

ep
x ¼

Ducosy
ðl=cosyÞ

¼
Ducos2y

l
ð3Þ

We limit our consideration to the case where the plate has a
large width (i.e. parallel to the z axis); in that case, the bending is
in plane strain with ez ¼ 0 (and sy ¼ 0). The axial stress is then
given by

sx ¼
Eee

x

1�n2
, ð4Þ

where E is Young’s modulus. The local strain-energy density
(energy per unit volume) w in the bent plate is

w¼
ð1�n2Þ

2E
s2

x ¼
E

2ð1�n2Þ
ee

x

� �2
ð5Þ

The total elastic strain energy W of the plate is then given by

W ¼ LB

Z h

0
wdy¼

LBE

ð1�n2Þ

Z h�a

0

y

R

� �2

dyþ

Z h

h�a

y

R
�
Ducos2y

l

� �2

dy

" #
,

ð6Þ

where L is the length of the plate (parallel to x) and B is its width
(parallel to z). The second integral on the right-hand side of
Δu
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Eq. (6), takes account of the plastic strain in the presence of the
SB. SBs cease to propagate as they approach the neutral plane.
With Eq. (4), noting that E¼ 2ð1þnÞm in an isotropic medium and
that sc ¼ 2tc, the transition between the elastic and plastic zones,
at the characteristic depth a (Fig. 1c), is determined by calculating
the distance from the neutral plane at which the shear stress
reaches the critical value for yield tc:

yc ¼ R
ð1�nÞtc

m
, ð7Þ

where m is the shear modulus. We have

a¼ h�yc ¼ h�R
ð1�nÞtc

m ð8Þ

The total strain energy in the bent plate then is:

W ¼
EBL

3ð1�n2Þ

h3

R2
�

2a
lR

3pha2

4
�a3

� �
þ

2a2a3

l2

" #
with
Table 1
The mechanical properties of several metallic glasses with different Poisson’s ratio n.

Material n m (GPa) sc (GPa) tc (GPa) y c

Zr41Ti14Cu12.5Ni10Be22.5 [5,14] 0.341 36.6 1.9 0.95 521 0.034

Zr57Nb5Al10Cu15.4Ni12.6 [6,14] 0.362 30.1 1.8 0.9 451 0.038

(Cu50Zr50)95Al5 [24,27] 0.372 32.3 2.0 1.0 501 0.039

Pt57.5Cu14.7Ni5.3P12.5 [15] 0.42 33.4 1.4 0.7 501 0.024

Pt74.7Cu1.5Ag0.3P18B4Si1.5 [16] 0.43 32.4 1.2 0.6 501 0.021
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Fig. 2. Shear-band spacing and shear offset in metallic-glass plates. (a) Spacing l and (b)

compared with measurements for Zr57Nb5Al10Cu15.4Ni12.6 from Ref. [6]. The prediction

Table 1 for different MGs tested in Ref. [6]. For b, a constant bending radius, R¼ 1000 mm

depend on Poisson’s ratio n, each tending to zero as n-0:5.
a¼ 1�2n
1�n

� �
a

R

cos2y
siny

ð9Þ

Plastic flow mediated by SBs lowers the elastic strain energy,
and it is expected that the smaller the SB spacing, the more
complete is the strain relaxation and the lower the total energy.
Interestingly, Eq. (9) shows that W does not decrease monotoni-
cally as l decreases, instead showing a minimum at

lmin ¼
8aRa

3ph�4a
ð10Þ

The increase in W below lmin is due to the unconstrained
elastic strain in our derivation. To enable a SB to extend from the
surface to a depth a, the axial elastic strain should never be
negative; this requires that in the range ðh�aÞryrh,

ee
x ¼

y

R
�
Ducos2y

l
Z0, ð11Þ

from which we have

lZ
cos2y
siny

1�2n
1�n

� �
a

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ðy�hÞ2

q
ð12Þ

The maximum value on the right-hand side in Eq. (12) occurs
at ymax ¼ h�ða2=hÞ, satisfying ðh�aÞryrh. This maximum at ymax

represents the minimum possible l if negative ee
x is to be avoided

throughout the plate thickness. As illustrated in Fig. 1d, this
condition determines the most probable SB spacing, which is:

l¼
cos2y
siny
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, offset Du as a function of plate thickness. The predictions of the present model are

in a assumes H=R¼ 0:2 and uses the same group of material parameters listed in

, is applied. The present analysis predicts that the spacing (c) and offset (d) should
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This is different from the expression for l derived by Conner
et al. [5]. Using Eq. (8), and taking plate thickness H¼ 2h, we can
rewrite Eq. (13) as

l
R
¼ b
ð1�2nÞ
ð1�nÞ

ðH=RÞ�c
� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2cH=RÞ�c2

p with c¼ ð1�nÞsc

m , ð14Þ

where b¼ cos2y=2siny is a material-dependent coefficient. It is
clear that l/R is controlled by four dimensionless parameters: H/R,
sc/m, y and n. For small c, l/R is proportional to (H/R)3/2. The shear
offset Du is given by

Du

R
¼ g 1�2n

1�n

� �
H

R
�c

� �2

, ð15Þ

where g¼ 1=ð4sinyÞ. For small c, Du=R is proportional to ðH=RÞ2,
consistent with the work of Conner et al. [5]. Johnson and Samwer
[23] found that at room temperature sc=m has the same value for
most metallic glasses. From Eqs. (14) and (15), we see that both
SB spacing and shear offset depend only on R, H/R, y and n. Next,
we use Eqs. (14) and (15) to analyze data from the literature [6]
and from experiments in the present work. Poisson’s ratio and
other materials properties of the metallic glasses under consid-
eration are given in Table 1.
R

sample

5 mm

1 mm

42 mm

38 mm

Fig. 3. Experimental setup for in-situ bending test. (a) bending test for fixed bending r

(d) close-up of the testing region and (e) a bent sample.
In Fig. 2a, we show our prediction of l for MG plates of different
thicknesses under bending. Measurements by Conner et al. [6] on
bent plates of Zr57Nb5Al10Cu15.4Ni12.6 are shown. Without any fitting
parameter, Eq. (14) matches the measured dependence of spacing
on plate thickness. We have assumed that H=R, tc=m, n and y have
uniform values across all the tests. Fig. 2b shows the prediction for
the dependence of Du on plate thickness at a constant bending
radius of R¼ 1000 mm. For fixed R, Eq. (15) predicts a parabolic
increase of offset with increasing plate thickness, in good agreement
with experiment from [6].

Eqs. (14) and (15) show that, other factors being constant, both
l and Du are proportional to ð1�2nÞ=ð1�nÞ. Conner et al. [5]
obtained this result but did not explore it, as their work preceded
the current intense interest in how the plasticity of MGs is
correlated with their elastic properties (particularly n) [14–16,
24–26]. We now calculate the dependence of l (Fig. 2c) and of Du

(Fig. 2d) on n for several bending ratios. All other materials
parameters are assumed to be the same as those of Zr41Ti14Cu12.5-

Ni10Be22.5 (in Table 1). The calculations imply that in metallic
glasses with higher n, plasticity is accommodated by denser
arrays of SBs with smaller shear offsets, i.e. the deformation is
more uniform.
12 mm
2 mm

H

adius R, (b) sample dimensions, (c) set-up of the bending facility in SEM chamber,



Fig. 4. In-situ bending of a (Cu50Zr50)95Al5 plate with H/R¼0.13. (a) initial configuration, (b) snapshot corresponding to a maximum tensile strain of about 2% when the

plate is still fully elastic, (c) snapshot at a strain of about 4% when shear bands have formed and (d) deformation pattern at a strain of about 6.3%, when the plate has

conformed to the curved loading tip.
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3. Experimental methods

The link between the plasticity of MGs and their Poisson’s ratio is
further explored in in-situ bending experiments. Two types of
metallic glass, Zr41Ti14Cu12.5Ni10Be22.5 (Vitreloy 1) and (Cu50Zr50)95Al5
are tested in the present work. Both MGs are made in an arc-melter
with a water-cooled hearth under a titanium-gettered argon atmo-
sphere. Elemental metals (499.9% purity) are used to form the
master alloy, and suction-cast into 1 mm�10 mm�60 mm plates.
To ensure good curvature control in the bent region, we designed the
bending rig shown Fig. 3a.

Typical sample dimensions are noted in Fig. 3b; different plate
thicknesses were tested, ranging from 0.25 mm to 1 mm. The
samples are cut from as-cast metallic glasses using electrical
discharge machining (EDM). To remove possible surface damage
during machining, the original samples were intentionally about
0.2 mm thicker than the target thickness, and then mechanically
ground using 5000 grade sandpaper on four surfaces (all except
the ends of the plate), followed by electropolishing. We use five
percent (vol%) perchloric acid ethanol solution as the electrolyte,
29 V and 0.3 A as the electrical parameters; samples are clamped
from the two ends by stainless tweezers as the anode, and then
electro-polished for about 15 s at 250 K. After polishing, samples
are processed by ultrasonic cleaning in ethanol solutions imme-
diately. After sample preparation, the samples were tested in an
in-situ bending rig that we designed. The magnitude of the
maximum strain rate, which occurs near the out-most surfaces
of bending plates, is about 10�3/s. The set-up of this rig in a
Hitachi S-570 Scanning Electron Microscope (SEM) is shown in
Fig. 3c–e, which respectively show the constraint of the sample
and the sample after bending. Fig. 4 shows the gradual bending of
a (Cu50Zr50)95Al5 plate with H=R¼ 0:13. Four stages: initial bend-
ing, at the elastic limit, nucleation of shear bands, and the final
bent plate, are shown in Figs. 4a–d.

After obtaining the bent plate at a given bending ratio, we
measured about 20 independent shear-band spacings or shear
offsets. The average of the measurements is used for most
probable shear-band spacing and for shear offset.
4. Application of the theory

Shear bands in Vitreloy 1 [2] bent to H=R¼ 0:1 and in (Cu50Zr50)95

Al5 bent to H=R¼ 0:16, are shown in Figs. 5a and b, respectively.



Fig. 5. Scanning electron microscopy of shear bands. (a) In a plate of Vitreloy 1 bent to H=R¼ 0:1, (b) in (Cu50Zr50)95Al5 bent to H=R¼ 0:16. Those bending ratios are close to

the maximum bending ratios we may apply to Vitreloy 1 and (Cu50Zr50)95Al5, which are 0.11 and 0.17, respectively. Close-ups of the sample in b: side view (c) showing the

spacing of primary shear bands, top view (d) showing the shear offsets which, though large, do not indicate any incipient cracking.
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Fig. 6. The importance of Poisson’s ratio: controlling shear-band spacing and shear offset. Comparison of measurements (each data point is the average of 20 independent

measurements) and predictions for (a) shear-band spacing, and (b) shear offset as a function of bending ratio. Two sets of predictions are shown for the spacing, from the

model of Conner et al. [5] (dotted lines) and from the present work (solid lines, Eq. (14)); for the offset, the predictions from the two models are the same (Eq. (15)).

Predictions from the same models are compared with measurements for (c) spacing, and (d) offset as a function of Poisson’s ratio for: (A) Vitreloy 1 at H=R¼ 0:11 and (B)

(Cu50Zr50)95Al5 at H=R¼ 0:16 (present work), (C) Pt57.5Cu14.7Ni5.3P12.5 at H=R¼ 0:28 [14], and (D) Pt74.7Cu1.5Ag0.3P18B4Si1.5 at H=R¼ 0:33 [16]. The error bars in c and d also

represent the standard deviation of 20 measurements.
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For the latter case, close-up views of the side (Fig. 5c) and top (d) of
the bent plate clearly show the SBs, their spacing and the associated
offsets. Fig. 6 shows the matching between these experimental results
and our predictions for l (Fig. 6a), and Du (Fig. 6b) as a function of
bending ratio. For four metallic glasses with distinct Poisson’s ratios
(materials parameters in Table 1), our predictions for l (Fig. 6c) and
Du (Fig. 6d) as a function of n at different bending ratios are in good
agreement with experiment. For l, the predictions in the present
work differ from those of Conner et al. [5]. From Figs. 6a and 6c, it
appears that the predictions of Conner et al., while capturing the
trend of the data, systematically overestimate the values of l. This
may be because their analysis ignores the contribution of elastic
strain (Eq. (1)) that is relatively much more significant in MGs than in
polycrystalline metals [23].
5. Concluding remarks

The pioneering work of Conner et al. [5] has been adapted and
extended in the present work to permit quantitative comparison of
prediction with measurement of shear-band spacings in bent plates
of metallic glasses with a range of values of Poisson’s ratio n. Higher
n is found to make the plastic deformation of metallic glasses more
uniform. This is desirable in itself, and the resulting smaller shear
offsets are particularly significant in giving shear bands that are
more likely to operate cold (without significant heating) [28], with
greater energy absorption (correlated with toughness), and less
likely to develop into cracks [5]. Such effects extend plasticity before
failure, intriguingly the same effect of higher n as for polycrystalline
metals [12], even though the flow mechanisms in the two classes of
material are entirely distinct (dislocation glide in polycrystals, shear
banding in glasses). The predictions suggest that plastic flow in
metallic glasses would become completely uniform (implying a
suppression of shear banding) when n rises to its limit of 0.5 (the
value for a liquid). In isotropic glasses the highest n obtained so far
[16] is 0.43, and induced anisotropy may permit even higher values
to be reached in particular directions [29]. The present work points
towards quite exceptional mechanical properties of metallic glasses
as n is increased towards the limit.
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Appendix. The offset on a shear band

Our expressions for the shear offset Du are entirely consistent
with those derived by Conner et al. [5]. The derivation of Eq. (2) in
the main text is based on Eq. (15) in Ref. [5].

For a constant shear resistance tc (Fig. A1), the applied shear
stress induces a displacement jump across the shear-band plane,
given by:

Du¼
ð1�2nÞ

m ðt�tcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x02
p

if x0ra

0 if x04a:

(
ðA1Þ

Eq. (15) in Ref. [5] is obtained based on the configuration
shown in Fig. A1 (the shear-band length is a, and x0 points to its
leading edge). If we convert Eq. (15) in Ref. [5] to our inclined
shear bands with a coordinate system defined in Fig. 1b,c, we
have

Du¼
ð1�2nÞ

m ðt�tcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ðy�hÞ2
p

siny if ðh�aÞoyrh

0 if 0ryo ðh�aÞ,

8<
: ðA2Þ

which can be further rewritten as:

Du¼
ð1�2nÞ

m
sðy ¼ hÞ

2 � sc
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ðy�hÞ2
p

siny if ðh�aÞoyrh

0 if 0ryo ðh�aÞ,

8<
: ðA3Þ

if we use the same approximation adopted in Eqs. (16) and (17) of
Ref. [5]. For Eq. (A3), recall that we have

ex ¼
1�n
2m sx ðA4Þ

This is the same as Eq. (2) in Ref. [5], and Eq. (A3) can then be
expressed as

Du¼
ð1�2nÞ
ð1�nÞ ðexðy¼ hÞ�ecÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ðy�hÞ2
p

siny if ðh�aÞoyrh

0 if 0ryo ðh�aÞ

8<
: ðA5Þ

With Eq. (A5), we arrive at Eq. (2) by using exðy¼ hÞ ¼ h=R and
the critical yield strain ec ¼ ðh�aÞ=R.

Du¼
ð1�2nÞ
ð1�nÞsiny

a
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ðy�hÞ2

q
if ðh�aÞoyrh

0 if 0ryo ðh�aÞ

8<
: ðA6Þ
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