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The structural geometry and size distribution of the local atomic rearrangements induced by

external stress in amorphous solids are investigated by molecular dynamics studies. We find that

the size distribution exhibits a generic power-law behavior and their structural geometry shows

fractal feature. This indicates that the local atomic rearrangements in amorphous solids are

self-organized during deformation. A simple theoretical model based on the interaction of the

heterogeneous elastic field sources is proposed which predicts the power-law scaling and

characterizes the properties of the local atomic rearrangements in amorphous solids. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4739260]

I. INTRODUCTION

In amorphous materials, the characteristics of the local

atomic rearrangements are crucial for the understanding of

the deformation mechanism.1–5 The shear transformation

zone (STZ) model proposed by Argon provides a picture of

the local atomic rearrangements and reveals that atomic

rearrangements are confined in clusters of particles.1 Based

on Argon’s work, Falk and Langer introduced mean-field

equations of motion for the number density of STZs and their

two-state translation.6 All these efforts have been successful

in explaining many phenomena, such as shear localization,

strain hardening, and emergence of yield in amorphous

solids.7 On the other hand, some other studies investigated the

property of the avalanches which are the accumulations of the

local atomic rearrangements defined by stress drops or energy

drops during deformation.8,9 It is found that during deforma-

tion the amorphous solids undergo cascades of local atomic

rearrangements, which induce quadrupolar energy fluctuation

and organize into lines of slips spanning the length of simula-

tion box. These studies indicate that local atomic rearrange-

ments are not independent, but correlate to each other.8,9

It is known that the stress-induced local atomic rear-

rangements give rise to long range elastic fields, and act as

stress sources similar to elliptic Eshelby inclusions.10 Since

every local atomic rearrangement can alter the stress field

surroundings, all the local atomic rearrangements embedded

in the elastic matrix may interact with each other and are

subjected to a self generated dynamic noise.11 This noise-

like complexity makes it difficult to model the deformation

behavior with the concern of the interaction between local

atomic rearrangements.12 The difficulty leads to some criti-

cal issues, for example, how these local atomic rearrange-

ments distribute in space during plastic deformation, and in

what manner these local atomic rearrangements cooperate

with each other. All these issues are still less understood, but

they are vital for understanding plastic deformation mecha-

nism in amorphous materials.

In this work, we characterize the structural geometry

feature and size distribution of the local atomic rearrange-

ments with external shear stress by molecular dynamics

(MD) simulation for two-dimensional (2D) and three-

dimensional (3D) Lenard-Jones (LJ) binary mixtures and 3D

CuZr metallic glass (MG) in shear deformation. A universal

scaling of size distribution of local atomic rearrangements is

found in the form of power-law distribution. The structural

geometry of the local atomic rearrangement exhibits fractal

feature, indicating that the local atomic rearrangements are

self-organized during shear deformation. The simulation

results show that this power-law distribution of local

atomic rearrangements is generic, independent of the atomic

potential or system size, reflecting the nature of structural

heterogeneity in amorphous solids. A simple theoretical

model based on the interaction of the elastic field sources is

proposed, which predicts the power-law scaling behavior.

II. MODEL AND METHOD

In LJ binary mixture of particle A and B, all particles

have the same mass, m¼ 1, and the composition A65B35 is

selected because it is stable against crystallization especially

in two dimension.13 The interatomic potential is given

by Uab(r)¼ 4eab[(rab/r)12� (rab/r)6], where a, b2 {A,B},

rAA¼ 1.0, eAA¼ 1.0, rAB¼ 0.8, eAB¼ 1.5, rBB¼ 0.88,

eBB¼ 0.5. Following common practice, the potential is trun-

cated and shifted at r¼ 2.5rab. Reduced units are used, with

rAA being the unit of length, eAA the unit of energy, and

(mrAA
2/48eAA)1/2 the unit of time.14 Two structure models

containing N1¼ 100 000 and N2¼ 500 000 atoms are gener-

ated for both 2D and 3D systems. The initial structure con-

figurations are equilibrated at T¼ 5.0, then cooled down to

target temperatures using NPT (constant number of atoms,

pressure and temperature) ensemble with hydrostatic pres-

sure fixed at 10.0 and cooling rate of 7� 10�4. For 2DLJ

system, structure samples at T¼ 0.1 and T¼ 0.2 are obtained

with box length of 282.7 and 283.6 for N1 structure model,

and 632.1 and 634.2 for N2 structure model, respectively.

For 3DLJ system, samples at T¼ 0.4 are fabricated (with

box length of 40.6 for N1 structure model and 69.5 for N2
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structure model). The glass transition temperature Tg is 0.33

and 0.58 for 2DLJ and 3DLJ systems, respectively.13 In our

simulations, simple shear deformation is applied to LJ binary

mixtures along x axis with period boundary conditions in all

directions. After each shearing with the strain interval of

0.1%, the system is relaxed for 2000 MD steps (with time

step of 0.014 (Ref. 14)), which leads to the average strain

rate of 3.6 � 10�5. For Cu50Zr50 MG containing 40 000

atoms with a realistic interatomic potential,15 compressive

deformation is applied at T¼ 300 K. Detailed information

about the sample preparation and deformation can be found

in Ref. 16.

III. RESULT AND DISCUSSION

To investigate the plastic deformation behavior on

atomic level, the nonaffine displacement of an atom relative

to its nearest neighbors determined by Voronoi tessellation

method under deformation D2(t, Dt) is calculated6 by

D2
i ðt;DtÞ ¼ 1

N

X
j

h
~rjðtÞ�~riðtÞ�~c

�
~rjðtþDtÞ�~riðtþDtÞ

�i2

;

where i denotes the central atom, and j runs over the N near-

est neighbors of central atom i, Dt is the time interval for

plastic rearrangement, and ~c is the maximum local elastic

strain tensor.6 Note that nonaffine displacement has been dis-

tinguished as a long-rang correlated continuous part and a

localized fluctuating part, and a clear transformation from

localized fluctuation to continuum at the length of about

inter-particle distance has been shown.17,18 Therefore, it is

be reasonable that we use the nonaffine displacement within

the inter-particle distance to characterize the local atomic

rearrangement.

Figure 1 shows the nonaffine displacement field of the

2DLJ N1 sample at the strain of 10% with strain interval of

1%, 2%, and 3%, respectively. It can be clearly seen that as

strain increases, the plastically deformed zones tend to trig-

ger the new local atomic rearrangements in the surrounding

areas. The “nearby triggering” effect results from the strong

interaction of elastic fields generated by quadruple-like plas-

tic events,8 so that the distribution of these local atomic rear-

rangements is directly correlated with the subtle interaction

of elastic fields. Therefore, characterizing the nature of the

distribution of these atomic rearrangements becomes quite

important for understanding the deformation mechanism in

amorphous solids.

First, we assume that an atom experiences plastic defor-

mation if its D2(t, Dt) value is in the top 5% (Dt is set as a

strain increment of 0.1% in the analysis below). With this

definition, one can justify whether an atom participates in

local irreversible rearrangements or not. Since the local envi-

ronments or the distribution of the free volume, chemical

order, and local atomic symmetry are inhomogeneous in

amorphous solids, the local atomic rearrangements will

occur in different regions and with different sizes.19,20

Therefore, the size of the local atomic rearrangements and

its distribution should reflect the dynamic response of the

local structures to the external stress. Figure 2 shows the size

distribution of the local atomic rearrangements in the 2DLJ

sample during deformation. It is interesting that the number

of atomic rearrangements monotonically decreases with the

size, which follows a power-law distribution. This indicates

that there is no characteristic size for the local atomic rear-

rangements during deformation.9,21 To check the choice of

top percentage threshold on the size distribution of the local

atomic rearrangements, we chose different top percentages

of D2(t, Dt) such as 10%, 20%, and 30% for the local irre-

versible rearrangements and investigated the size distribu-

tions. As shown in Fig. 2, with the choice of different top

percentages of D2(t, Dt), the power-law behavior still holds.

This indicates that in a certain range, the choice of top per-

centage of D2 will not influence the result. For convenience,

we will choose top 10% of D2 value in the analysis below.

FIG. 1. Nonaffine displacement field in

2DLJ N1 sample at the strain of 10%

with the strain interval of 1% (a), 2%

(b), and 3% (c), respectively. T¼ 0.2.

FIG. 2. The size distribution of local atomic rearrangements in a 2DLJ

sample with different choices of top percentage of D2 values at strain 10%.
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Note that significant non-affinity can be present in

purely elastic response due to the inhomogeneous relaxation

in disordered structures, and it is important to explicitly dis-

tinguish the plastic rearrangements from elastic relaxation.22

This issue is far beyond the topic of this work. To some

extent, however, one may still use the nonaffine displace-

ment to characterize the local atomic rearrangements.6,7,16,26

In our study, the data were collected in plastic flow region

where the local plastic rearrangements are dominant. There-

fore, using nonaffine displacement to define the sites of

plastic deformation should be a reasonable approximation.

Next we investigate the effect of system size and temper-

ature on the power-law distribution of the local atomic rear-

rangements for 2DLJ and 3DLJ systems and Cu50Zr50 MG.

As shown in Fig. 3, the size probability distribution of the

local atomic rearrangements collapses together very well in

the form of power-law distribution in both dimensionalities

PðsÞ � s��; (1)

where P and s represent the probability and size of local

atomic rearrangements, respectively. This finding indicates

that the power-law behavior of size distribution of the local

atomic rearrangements is generic, independent of the system

size, temperature, and even the interatomic interaction in

MGs, which is reminiscent of self-organized phenomena.

To examine the feature of these self-organized local

atomic rearrangements, we analyzed their structure geometry

feature by using box-counting method which is one of the

most common methods for the fractal analysis23: in 2D (3D)

case, for grids of squares (cubics) with edge length Dx, the

number of squares (cubics) N(Dx) containing at least one of

atoms participating the local atomic rearrangements is deter-

mined. The “box-counting” dimension Df is determined by

NðDxÞ � Dx�Df . Figure 4 shows the relationship between

N(Dx) and Dx in 2DLJ samples. By fitting the smaller Dx
part of the curves, it is found that Df is about 0.92, which

indicates fractal geometry of the irreversible rearrangement

regions. For top 20% and 30% of D2, Df � 1.09 and 1.20 in

2D case, respectively. In 3D case, it is found that Df � 1.09,

1.25, and 1.47 for top 10%, 20%, and 30% of D2, respec-

tively. All these findings indicate the fractal geometry

feature of the local atomic rearrangements. Therefore, the

fractal geometry feature confirms that local atomic rear-

rangements are self-organized during plastic deformation.

In order to get deep insight into the self-organized

behavior of the size distribution of local atomic rearrange-

ments, we applied a simple theoretical model proposed by

Holtsmark for the distribution of the gravitational forces cre-

ated by the random distribution of stars.23 In this model, it is

found that the distribution of the gravitational forces follows

a power-law behavior due to the heterogeneity of the distri-

bution of stars.23 In our case, local atomic rearrangements

give rise to long-range elastic fields,8–10 and the elastic fields

trigger new local atomic rearrangements. Therefore, the dis-

tribution of the elastic stress should correspond to the distri-

bution of local atomic rearrangements. As mentioned above,

the location of local atomic rearrangements depends strongly

FIG. 3. Probability distribution of the local atomic

rearrangements in 2D (a) and 3D (b) systems. The

dashed lines are the power-law distribution with

exponent of �2 predicted by the theoretical model.

FIG. 4. Box-counting method for the relationship between N(Dx) and Dx,

indicating the fractal geometry feature of the local atomic rearrangements.
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on the complex local structures, so that it is natural to assume

that local atomic rearrangements are randomly distributed in

amorphous solids, and the probability of finding a local

atomic rearrangement in the distance between r and rþ dr
can be expressed as

PðrÞdr � qrd�1dr; (2)

where d denotes the spatial dimensionality and q presents

the average density of the local atomic rearrangements. Only

the atomic rearrangements within a cutoff distance from the

considered point are taken into account, because the elastic

field generated by the atomic rearrangements far away from

the point can be neglected.

On the other hand, the elastic field generated by one

single atomic rearrangement decays with distance as

GðrÞ � r�l, and the decaying exponent l is equal to 2 (3) in

2D (3D) system.24 Here G is the elastic shear stress. Assum-

ing that the atomic rearrangements that are further away do

not contribute significantly compared to the closer ones, we

may get the distribution P(G)dG of the local shear stress

G and P(G)dG¼P(r)dr, which yields

PðGÞdG � 1

l
G��dG; � ¼ 1þ D

l
: (3)

In the case of a small strain interval, the local stress should

correspond to the local atomic rearrangements, so that the

sizes of local rearrangements are approximately proportional

to the intensity of local stress, which leads to the form of

Eq. (1) for the probability distribution of the local atomic

rearrangements. Finally, �¼ 2 is obtained for the probability

distribution of the local atomic rearrangements in both 2D

and 3D cases.

As shown in Fig. 3, the dashed lines demonstrate that the

power-law behavior predicted by this theoretical model is in

good agreement with the simulation results, especially for 3D

case. This is consistent well with the distribution of local

stress in sheared 2DLJ amorphous solid.25 It has been shown

that strain field is heterogeneous.26,27 According to our theo-

retical model, the self-organized stress-induced local atomic

rearrangements result from the heterogeneous stress fields. If

the plastic deformation is completely homogeneous, the elas-

tic force will be zero in an infinite sample, due to the exact

cancellation of the forces among all pairs of deformed points

symmetric to each other. This theoretical model indicates that

the nature of the elastic fields generated by local atomic

rearrangements in plastic deformation finally leads to the

self-organized behavior of these local atomic rearrangements.

We note that the heterogeneity-induced self-organized

phenomenon is different from the evolution of the shear

bands in deformed amorphous solids.28,29 This is because the

self-organized local atomic rearrangements emerge in

short-time interval and are the processes of the creation and

annihilation of STZs, which is closely related to the initial

stage of plastic deformation. A relative long-time interval for

deformation may break down the self-organization of the

local atomic rearrangements. Strain rate is another ingredient

that affects the self-organized behavior of local atomic

rearrangements. High strain rate may also disrupt the self-

organization, because the correlation between local atomic

rearrangements will disappear as strain rate goes to

_c !1.11 We also did detailed analysis for various strain

rates. Figure 5 shows that the probability distribution is grad-

ually deviating from the power-law behavior as strain rate is

getting higher in LJ system. However, for a realistic strain

rate, the phenomenon of self-organization will sustain. We

also note that instead of Voronoi tessellation, the first mini-

mum of pair distribution function was also used as the clear

length-scale cutoff to determine the nearest neighbors, which

does not affect the above results.

So far, we have characterized the structural geometry fea-

ture and size distribution of local atomic rearrangements

induced by shear deformation. It has been suggested that

the structures of MGs consist of densely packed solid-like

atomic clusters and loosely packed liquid-like regions.14,20,26,30

Such a nanoscale structural heterogeneity leads to the local

environments, the distribution of free volumes, chemical

order, or local atomic symmetry quite different from one

region to another in amorphous solids, so that local atomic

rearrangements will occur in different regions and with dif-

ferent sizes.19,20 It has been suggested that either

FIG. 5. Strain rate dependence of the

probability distribution of the local atomic

rearrangements in 2D (left panel) and 3D

(right panel) systems.
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temperature or applied shear stress can induce the glassy

structure destabilization which prefers to be initiated in the

loosely packed liquid-like regions,31 so that the characteris-

tics of the local atomic rearrangements reflect the dynamical

response of the heterogeneous structures to the external

stress.32,33 Therefore, our results also have implications for

the understanding of the structural and mechanical heteroge-

neity in MGs.

IV. CONCLUSION

In summary, we have characterized the local atomic

rearrangements in shear deformation in amorphous solids.

The size distribution of these local atomic rearrangements

exhibits power-law behavior, far from the Gaussian distribu-

tion, which means the local atomic rearrangements can not

be considered as randomly independent variables. We also

find that these local atomic rearrangements are self-

organized in plastic deformation. A simple theoretical model

is proposed and predicts the power-law scaling behavior,

indicating that the long-range heterogeneous elastic field

sources induce the power-law size distribution of the local

atomic rearrangements. The findings may shed light on the

understanding of nature of the structural and mechanical het-

erogeneity in MGs.
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