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We present an analysis of fractal geometry of extensive and complex shear band patterns in a
severely deformed metallic glass. We show that the shear band patterns have fractal characteristics,
and the fractal dimensions are determined by the stress noise induced by the interaction between
shear bands. A theoretical model of the spatial evolution of multiple shear bands is proposed in
which the collective shear bands slide is considered as a stochastic process far from thermodynamic
equilibrium. © 2011 American Institute of Physics. �doi:10.1063/1.3592249�

At ambient temperature plastic deformation of most me-
tallic glasses �MGs� is inhomogeneous with plastic strains
confined to thin shear bands and serrated flow in stress-strain
curves.1–7 For a few ductile MGs �Ref. 8 and 9� or MG
samples with low aspect ratio,10 multiple shear bands are
observed. The network pattern formed by the branching and
multiplication of shear bands can effectively dissipate the
plastic energy and alleviate stress concentration, thus, lead-
ing to large compressive plasticity. The spatial evolution of
these multiple shear bands as well as the underlying physical
mechanism, however, is still poorly understood.

Most analyses on shear bands of MGs are based on the
mean-field free volume11 or shear transformation zone �STZ�
theory.1 The temporal or spatial correlation between shear
bands is often neglected. But in some cases, shear band pat-
terns are complex and appear on various scales with the fea-
ture of randomness and heterogeneity. A few studies have
also shown the importance of shear bands interaction on the
plasticity of MGs.12,13 In this letter, we present a fractal
analysis of the complex multiple shear bands patterns in a
severely deformed MG. The result as well as its implications
for the plastic deformation mechanism of MGs is interpreted
in terms of a proposed stochastic model of spatial evolution
of multiple shear bands.

Cubic plastic Zr64.13Cu15.75Ni10.12Al10 MG samples9 with
a size of 1.5�1.5�1.5 mm were used in the compression
tests, as it was reported that large plastic strains can be ob-
tained for specimens with aspect ratio lower than 1.10 Figure
1 shows a typical stress-strain curve with compressive strain
up to 40% for the MG. Obvious serrated flow can be seen in
the curve. The statistical analysis on serrations13 in this curve
give a power distribution D�s�=s−1.40, where D�s� is the
probability density of the serration magnitude s, indicating
shear band interaction may play a role in the complex, scale-
free shear process. The stress curve with a clear upward drift
with strains cannot be ascribed to strain-hardening behavior
of MG, as reflected from the true stress-strain curve with
almost constant flow stress for shear bands in the plastic
regime.14

Figure 2�a� shows a typical scanning electron micro-
graph �SEM� of multiple shear bands pattern as observed
from the side surface of sample at plastic strain of 40%. The
pattern is highly heterogeneous in the shear band density

distribution and seems appear in various scale �see the mag-
nified region in Fig. 2�b� with much finer shear bands�.
Clearly, the average shear band spacing cannot be well de-
fined. The shear band patterns at other large plastic strains
also show similar characters. The fractal analysis15 was then
used to characterize these complex patterns. The micro-
graphs can be regarded as consisting of the shear band pat-
terns and the undeformed matrix cells surrounded by shear
bands. According to their different contrasts, we first digitize
the images into binary maps �“white” for shear bands and
“black” for matrix cells�. The box-counting method is then
applied to estimate the fractal dimension. For grids of square
boxes with edge length �x, the number N��x� of boxes cov-
ering at least one pixel of a shear band has the relation of
N��x���x−DB, where DB is typically a noninteger number
called “box-counting” dimension for a fractal pattern. The
double-logarithmic plots of N��x� versus �x corresponding
to the shear band patterns at strain of 40% are shown in Fig.
3�a�. A clear linear scaling regime extended more than one
order of magnitude of �x with the box dimension DB
=1.53�0.02 can be seen in the plot, which is the typical
feature of a fractal. Deviations from the linear region at both
ends are also observed, often arising from finite size effect
of actual fractal objects.15 In our case, the slight deviation at
the beginning of the linear regime may be due to finite thick-
ness of shear bands. At large �x, the relation N��x���x−2
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FIG. 1. �Color online� The compressive stress-strain curves of the cubic MG
sample at the strain rate 5�10−4 s−1: the black is the engineering stress-
strain curve and the red is the true stress-strain curve. Obvious serrations can
be observed from the magnified part of the stress curve in the plastic regime.
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holds, indicating after a critical edge length of box, the ana-
lyzed area is covered completely. The fractal nature of shear
band pattern is corroborated by analyzing the size distribu-
tion of matrix cells surrounded by shear bands. For a hole
fractal in two dimensions, the cumulative frequency distribu-
tion N����� of cells with linear sizes larger than � has the
relation of N�����=C�−DG, where DG is called the “gap
dimension.”16 Here, we define the linear size � of a cell as
�=�S with S being the area of cell. The prefactor C depends
on the cell shape, fractal dimension DG and the analyzed area
A and reads C= �A�2−DG� /DG�DG/2 for square cells by as-
suming that the scaling regime extends up to the cell size
where the cumulative frequency distribution falls below 1.
The cumulative cell size distribution for the shear band pat-
terns at plastic strain of 40% are depicted in Fig. 3�b�. A
linear scaling regime over more than one order of magnitude
of cell size is also found. The gap dimension DG and log C
determined by fitting the experimental data are 1.62�0.08
and 3.02, respectively. The value of DG coincides with DB,
suggesting that the roughness of shear bands does not affect
the fractal dimension. We also note that the fitting values of
C, DG, and the analyzed area A �3.9�104 �m2� well satisfy
the relation C= �A�2−DG� /DG�DG/2, which strongly suggests
that the scaling is genuine and only delimited by finite size
effects. The shear band patterns at other large plastic strains
are also analyzed by the fractal method yielding similar re-
sults �for example, at plastic strain of 60%, DB=1.63�0.02,
and DG=1.58�0.07�. The formation of fractals can be inter-
preted as the intersections between different orders of shear
bands with different directions and various spacing, as illus-
trated in Fig. 4�a�. Despite the real shear band patterns ap-
pear more randomly and heterogeneously, the schematic pat-
tern shown in Fig. 4 indeed resemble that of Fig. 2. It should
be noted that the multiple shear band patterns in the present

analysis is induced by geometrical constraints of samples,
thus, the fractal geometry cannot be universally applicable to
shear band patterns generated under other load conditions.

To theoretically understand above results, we propose a
stochastic model for the spatial evolution of shear bands. The
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FIG. 2. �Color online� SEM micrographs of multiple shear band patterns
observed from the side surface of the MG �a� patterns at plastic strain of
40% and �b� the magnified shear bands of the region I in �a�.
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FIG. 3. �Color online� Fractal analysis of shear band patterns in Fig. 2�a�:
�a� The N��x���x relation obtained by counting box method. �b� The
cumulative frequency distribution N ����� of cell size surrounded by shear
bands.
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FIG. 4. �Color online� �a� Schematic diagram of the fractal pattern for shear
bands. �b� The calculated density distribution p��� of shear band spacing �
for different values of 	1 and 	2.
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fractal geometry suggests that the evolution of multiple shear
bands is a process of far from thermodynamic equilibrium
and interaction between shear bands should be considered.
According to the free volume or STZ theory,1,11 shear bands
in the absent of interaction can operate under a steady state
stress 
s which is regarded as a smooth function in space and
time. Here, we consider that the transient shear band inter-
action can induce fluctuating internal stress 
int on operating
shear bands. As 
int varied much rapidly than 
s, we assume
that 
s is a constant in the time scale of the transient interac-
tion, thus 
int can be regarded as stress noises exerted on 
s.
For the collective operating shear bands, the effective stress

eff is 
eff=
s+
int. It must be pointed out that the fluctuating
stress cannot solely be attributed to the shear band interac-
tion. Recent studies show that the flow serrations may also
arise from the stick-slip motion of a single shear band.2,3 As
our goal is mainly to give a possible theory for the formation
of fractal pattern of shear bands, a full stochastic model by
incorporating the stick-slip dynamics of shear bands is obvi-
ously beyond the scope of this study.

For the inhomogeneous deformation process in MGs, the
local shear strain rate �̇ is expressed as1 �̇= �̇0 exp�−�G
−
effVap /kBT�, where �̇0 is a characteristic shear strain rate,
�G is the total energy barrier, and Vap is the activation vol-
ume. According to this equation, the fluctuation of stress
gives rise to spatiotemporal variation in �̇ and thus heteroge-
neity in the distribution of shear band patterns. Instead of
treating microscopic details �which is impossible in analyti-
cal modeling�, we proceed by considering the mesoscopic
properties of the internal stress 
int from its noise character.
The fluctuation amplitude of 
int is derived by assuming the
deformation is in the quasistatic stress equilibrium and using
Furutsu–Novikov theorem with an analogy of shear bands to
dislocations:17 �
int	=S���̇2	 / ��̇	, where � · 	 denotes the tem-
poral average effect over a sufficiently long interval of time
during the operation of shear bands, S=� ln�
eff	 /� ln��̇	 is
the strain rate sensitivity representing the dynamic response
function to the average imposed �̇. This suggests that the
fluctuating internal stress cannot be viewed as purely white
noises. Generally, the 
int is a function of �, �̇, and stochastic
noise �w with ��w�t��w�t��=2��t�	 :
int=
int�� , �̇ ,�w�. The
values of strain rate sensitivity is usually small for MGs,3,18

hence, we neglect the strain rate dependence of 
int and as-
sume 
int is only the linear function of � and �w :
int=A�
+B�w, where A and B are the weighting factors of the deter-
ministic and stochastic parts of the 
int, respectively. The
linear dependence of 
int on � can be understood from the
fact that more shear bands will be induced as the plastic
strain increases, yielding higher 
int. Taking 
int into the local
strain rate equation, using Taylor expansion and keeping the
linear terms, we obtain the temporal evolution of the local
plastic strain �

�̇ = R + �RAVap/kBT�� + �RBVap/kBT���w , �1�

where R= �̇0 exp�−�G−
sVap /kBT� is the constant strain rate
produced by the steady state stress. Equation �1� is a typical
Langevin equation. The steady-state probability distribution
ps��� of � is obtained by solving the Fokker –Planke equa-
tion corresponding to Eq. �1�. Using the Stratonovich calcu-
lus, ps��� reads

ps��� = N�−�1−	1� exp�− 	2/�� , �2�

where 	1 and 	2 are defined as 	1=AkBT / �RVapB
2�, 	2

=kB
2T2 / �RVap

2 B2�, and N is a normalization constant. The sta-
tistical information relevant to shear band patterns can be
obtained from Eq. �2� if the relation between the plastic
strain and shear bands is known. Bei et al.10 found that the
average spacing of shear bands decrease linearly with the
overall plastic strain � :���−1. Assuming that this relation
only holds for the local area on the surface of the sample, Eq.
�2� is then transformed into the shear band spacing distribu-
tion by change in variables ps���d�= ps���d�

ps��� � �−�1+	1� exp�− 	2�� . �3�

The probability distributions ps��� decreases monotonically
with � for various values of 	1, 	2, as illustrated in Fig. 4�b�.
When ��max=1 /	2, the exponential term becomes trivial
and ps��� diverges to �−�1+	1� as � goes to zero. The hyper-
bolic distribution reflects the fact that shear bands organize
on various scales up to the maximum shear band spacing
�max=1 /	2. In heavily deformed MGs, the density of shear
bands is very high and the corresponding � is usually very
small. Thus, the corresponding cumulative cell size distribu-
tion function P����� behaves as P�������−	1. This is
consistent with the form of the above experimental cumula-
tive cell size distribution of N�����=C�−DG. So the fractal
dimension is in fact equal to the parameter 	1 which is de-
termined by the weighting factors A and B. Therefore, our
stochastic model gives a theoretical explanation for the for-
mation of fractal patterns of multiple shear bands during the
deformation of MGs.
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