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Characterization of activation energy for flow in metallic glasses
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The molar volume (Vm) scaled flow activation energy (�E), namely as the activation energy density ρE =
�E/Vm, is proposed to describe the flow of metallic glasses. Based on the energy landscape, both the shear
and bulk moduli are critical parameters accounting for the ρE of both homogeneous and inhomogeneous flows
in metallic glasses. The expression of ρE is determined experimentally to be a simple expression of ρE =
10
11 G + 1

11 K . The energy density perspective depicts a realistic picture for the flow in metallic glasses and is
suggestive for understanding the glass transition and deformation in metallic glasses.
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The desire to understand the mechanism of plastic defor-
mation of bulk metallic glasses (BMG’s) has caused much
interest.1–5 On the other hand, the mysterious glass transition
phenomenon, which connects the liquid and glassy state,
has wide applications in daily life, industry, and organism
preservation.6–8 In past decades, intensive efforts have been
made to understand the glass transition and plastic deformation
in metallic glasses.1–6 Recently, it was certified that the thermo-
dynamic origins of plastic deformation in BMG’s and the glass
transition are the same4,5 and the glass transition, relaxation,
and homogeneous and inhomogeneous deformations in glasses
are all closely related to the flow event controlled by the
activation energy barrier. It is therefore a major challenge
to describe and model the homogeneous and inhomogeneous
flows in metallic glasses.

A number of models have been proposed to explain the
flow in glasses.1–3,6–10 In elastic models, the elastic modulus
is often found to play an important role in the flow.5–11 For
example, both the shoving model6 and cooperative shearing
model11 suggest that the flow activation energy (�E) is directly
linked with shear modulus G. The correlations between glass
transition temperatures and the elastic moduli for various
metallic glasses also confirm the important role of elastic
moduli in the flow of glasses.5,12–18 However, more and more
evidence has been found that the flow activation energy in
glasses and glass-forming liquids is not only related to G.
In fact, in the homogeneous flow of glass-forming liquids,
according to the shoving model, a characteristic volume Vc

is involved as: �E = GVc.6 In the inhomogeneous flow of
glasses, the activation energy of a flow event unit (shear
transformation zone, STZ) also correlates with volume as
�ESTZ = (8/π2)Gγ 2

Cζ�, where � is the volume of STZ
and γ C is the shear strain limit.11 On the other hand, the
elastic moduli scaled with molar volume (Vm) show better
correlations with the thermal and mechanical properties for
metallic glasses.17–20 Thus the characteristic volume or bulk
modulus could be an important parameter involved in the
flow event in glass transition and in glass, and consider
that the merely single elastic modulus, such as the shear
modulus, could not exactly capture the whole experimental
observations.17,18

In this Brief Report, based on the potential energy landscape
concept, we derive an energy density perspective on flow
in metallic glasses that is associated with both shear and

bulk moduli. The analysis demonstrates that the activation
energy for flow in metallic glasses and glass-forming liquids
are determined by both shear and dilatation effects. The
proposition is certified by the experiment for various metallic
glasses. The physical origin of the extended elastic model is
discussed.

The temperature dependence of the viscosity η of glass-
forming liquids can be described by the equation6

η = η0 exp

[
�E(T )

RT

]
, (1)

where η0 is a constant, �E(T) the specific activation energy for
flow (in units of J/mol), and R the gas constant. The specific
activation energy is a characteristic physical parameter for
a glass system and represents the activation energy required
for per mole atoms. Recently, it was found that the molar
volume Vm plays a critical role in the thermal and mechanical
properties for metallic glasses.5,17–20 Thus we define the
activation energy of a unit volume as the activation energy
density (ρE)

ρE = �E

Vm

. (2)

With the definition of ρE , one can rule out the vague char-
acteristic volume as being involved in both homogeneous and
inhomogeneous flows and directly relate the flow activation
event to the elastic moduli.6,9,11

The energy landscape has been widely used to describe
the complex inherent states or flow in liquid and glass.6,11

In the energy landscape perspective, as shown in Fig. 1,
every minima represents one inherent state. The transition
from one minima to another represents a flow event. The
activation energy �E for flow is assumed to be mainly
elastic energy6,21 and can be expressed in a harmonic form
ρE = 1

2Mγ 2 by second-order Taylor expansion around the
minima,22 where M is the elastic moduli and γ the elastic
strain. The equipartition law of statistical mechanics gives
1
2M〈γ 2〉 = 1

2kBT /Vm,23 suggesting that 〈γ 2〉 = kBT /MVm.
In the energy landscape, if the distance 2γ0 between the minima
is constant, the real energy barriers will be proportional to the
barrier estimated by second-order Taylor expansion (the thin
curves in Fig. 1). The estimated flow activation energy density
is ρE = 1

2Mγ 2
0 = 1

2
kBT
〈γ 2〉γ

2
0 or ρE ∝ kBT /Vm

〈γ 2〉 . Because the atoms
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FIG. 1. (Color online) The pink full curve shows the schematic
map of the potential energy density landscape with the distance 2γ0

between the minima. The blue thin curve gives the estimation by
second-order Taylor expansions around the minima.

release three degrees of freedom around the glass transition,24

one has 〈γ 2〉 = kBT /Vm

Mx
+ kBT /Vm

My
+ kBT /Vm

Mz
, where x, y, and

z represent the three directions in Cartesian coordinates and
Mx , My , and Mz are the corresponding elastic moduli. For
isotropic materials, they represent two shear moduli and one
longitudinal modulus as Mx = My = ρV 2

S = G and Mz =
ρV 2

L = K + 4G/3, where ρ is the mass density, K the bulk
modulus, and VS and VL are the shear and longitudinal sound
velocities, respectively. Then one gets

〈γ 2〉 = 2kBT /Vm

ρV 2
S

+ kBT /Vm

ρV 2
L

= 2kBT /Vm

G
+ kBT /Vm

K + 4G/3
.

(3)

Substituting Eq. (3) into ρE ∝ kBT /Vm

〈γ 2〉 gives ρE ∝
G(K+4G/3)
2K+11G/3 . The linear contribution of G and K can be estimated

by defining the temperature dependency of ρE I = d ln ρE (T )
d ln T

,22

we get I = (1 − KG

2K2+ 19
3 KG+ 44

9 G2 ) • IG + KG

2K2+ 19
3 KG+ 44

9 G2 •
IK , alternatively, I = (1 − α) • IG + α • IK , with

α = KG

2K2 + 19
3 KG + 44

9 G2
. (4)

For metallic glasses, G/K varying from 0.2 to 0.54,20 gives the
partition coefficient of α = 0.07 ± 0.01 . The nonzero par-
tition coefficient suggests that both the volume-conservative
shearing (corresponding to G) and volume-nonconservative
dilatation (corresponding to K) contribute to the flow of
metallic glasses, and dilatation contributes around 7% to the
activation energy density for creating the room for atomic
rearrangement.25

To determine the exact contribution of K and G to
the activation energy density for flow, the acoustic veloc-
ities change during glass transition has been studied. The
T-dependent transversal (Vs) and longitudinal (VL) velocities
change differently during the glass transition process.6,26

The ratio of the relative changes of the two velocities
is about �VS

VS
: �VL

VL
≈ 2 : 1.6,26 From ρV 2

S = G and ρV 2
L =

4
3G + K , we obtain the relative changes of G and K, �G

G
:

�K
K

≈ 5 : 1. In three-dimensional space, there are two shear
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FIG. 2. (Color online) (a) The experimental data of
(0.91G + 0.09 K)Vm/RTg versus various kinds of BMG’s.
(b) The (0.91G + 0.09K)Vm/RTg versus mass density. (c) The
(0.91G + 0.09K)Vm/RTg versus ν. We can find that the
(0.91G + 0.09K)Vm/RTg is independent of materials and can
be fitted by a constant very well.

modes(corresponding to G) and one radial mode (dilatation
mode corresponding to K) when atoms move. Thus the
contribution of G should be doubled and the ratio of the
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FIG. 3. (Color online) (a) The KVm/RTg and (b) GVm/RTg
versus ν for 46 kinds of metallic glasses. The lines are the linear
fit result of the experimental data. They have clear dependence on ν.
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contribution of G and K in ρE should be about 10 : 1,
that is,

ρE = 10
11G + 1

11K, (5)

indicating α = 1/11 = 9%, which is consistent with the
previous theoretical result.

To further confirm the model, we check the correlations
between glass transition temperatures and the elastic moduli
for various metallic glasses, which play a key role for verifying
the elastic moduli for the flow of glasses.12–18 Upon glass

transition, the viscosity of glass-forming liquids approaches
η(Tg) = 1013 poise,2,3 suggesting �E(T )

RT
|T =Tg

≡ constant.1

Therefore, �E/Tg should be independent of the metallic
glasses. According to our model, ρEVm

RTg
= (0.91G+0.09K)Vm

RTg
≡

constant. Figure 2(a) shows the data of (0.91G+0.09K)Vm

RTg
versus

various kinds of BMG’s (data are listed in Table I). One can see
that these data can be fitted by a constant 0.075 very well. The
data of (0.91G+0.09K)Vm

RTg
for various metallic glasses versus other

parameters such as density and Poisson’s ratio are shown in

TABLE I. The compositions Tg , average molar volume Vm, ν, and the combined parameters Moduli·Vm/RTg of 46 different kinds of BMG’s
(Refs. 14,15,20) are shown.

Compositions Tg K Vm cm3/mol ν GVm/RTg KVm/RTg (0.91G + 0.09K)Vm/RTg

Ca65Mg8.54Li9.96Zn16.5 317 20.25 0.307 0.0688 0.155 0.0765
Ca65Mg8.31Li9.69Zn17 320 20.10 0.291 0.0678 0.139 0.0743
Yb62.5Zn15Mg17.5Cu5 385 19.24 0.276 0.0625 0.119 0.0676
Ce70Al10Ni10Cu10 359 16.94 0.314 0.0653 0.153 0.0732
(Ce20La80)68Al10Cu20Co2 366 16.78 0.338 0.0654 0.180 0.0757
Ce68Al10Cu20Nb2 345 16.70 0.328 0.0678 0.175 0.0775
(Ce80La20)68Al10Cu20Co2 355 16.69 0.337 0.0658 0.180 0.0760
Ce68Al10Cu20Co2 352 16.57 0.328 0.0668 0.172 0.0763
Ce68Al10Cu20Ni2 352 16.57 0.333 0.0678 0.180 0.0779
Ce68Al10Cu20Co2 351 16.44 0.333 0.0640 0.170 0.0735
La60Al20Co20 477 15.96 0.335 0.0585 0.158 0.0674
Pr55Al25Co20 509 15.07 0.341 0.0548 0.155 0.0639
Dy55Al25Co20 635 14.27 0.304 0.0636 0.141 0.0706
Tb55Al25Co20 612 14.15 0.302 0.0635 0.140 0.0704
Ho55Al25Co20 649 13.85 0.311 0.0652 0.151 0.0730
Er55Al25Co20 663 13.55 0.306 0.0665 0.149 0.0740
Tm39Y16Al25Co20 664 13.51 0.305 0.0726 0.162 0.0807
Tm55Al25Co20 678 13.47 0.319 0.0612 0.148 0.0690
Lu39Y16Al25Co20 687 13.30 0.316 0.0699 0.166 0.0785
Lu45Y10Al25Co20 698 13.25 0.307 0.0710 0.160 0.0790
Lu55Al25Co20 701 13.20 0.307 0.0693 0.157 0.0772
Mg65Cu25Gd10 421 12.51 0.313 0.0689 0.161 0.0772
Mg65Cu25Y9Gd1 423 12.37 0.277 0.0718 0.137 0.0777
Mg65Cu25Y10 419 12.36 0.302 0.0669 0.147 0.0741
Mg65Cu25Y8Gd2 420 12.23 0.284 0.0705 0.140 0.0767
Mg65Cu25Y5Gd5 422 12.05 0.284 0.0677 0.134 0.0737
Mg65Cu25Tb10 415 11.95 0.309 0.0680 0.155 0.0758
Zr64.13Cu15.75Ni10.12Al10 640 11.68 0.377 0.0624 0.234 0.0779
Zr65Cu15Ni10Al10 652 11.65 0.37 0.0651 0.229 0.0799
Zr61.88Cu18Ni10.12Al10 651 11.51 0.377 0.0618 0.230 0.0770
Zr55Al19Co19Cu7 733 11.44 0.377 0.0579 0.216 0.0720
Zr57Nb5Cu15.4Ni12.6Al10 687 11.44 0.365 0.0641 0.216 0.0777
Zr57Ti5Cu20Ni8Al10 657 11.43 0.362 0.0629 0.207 0.0760
(Zr59Ti6Cu22Ni13)85.7Al14.3 689 10.74 0.363 0.0637 0.211 0.0770
Cu45Zr45Al7Gd3 670 10.71 0.358 0.0637 0.204 0.0764
Zr46.75Ti8.25Cu10.15Ni10Be27.25 622 10.21 0.35 0.0734 0.221 0.0867
Zr48Nb8Cu12Fe8Be24 658 10.17 0.36 0.0654 0.211 0.0785
Zr41Ti14Cu12.5Ni10Be22.5 625 9.79 0.352 0.0705 0.215 0.0835
Ni45Ti20Zr25Al10 733 9.61 0.359 0.0634 0.204 0.0760
Cu60Zr20Hf10Ti10 754 9.50 0.369 0.0559 0.194 0.0684
Pd77.5Cu6Si16.5 633 8.74 0.41 0.0528 0.276 0.0729
Pd64Ni16P20 630 8.29 0.408 0.0517 0.263 0.0707
Pd40Cu40P20 590 7.98 0.402 0.0540 0.257 0.0723
Pd39Ni10Cu30P21 560 7.97 0.397 0.0601 0.272 0.0791
Fe53Cr15Mo14Er1C15B6 900 7.94 0.317 0.0734 0.191 0.0840
Fe61Mn10Cr4Mo6Er1C15B6 930 7.48 0.281 0.0725 0.141 0.0787

012201-3



BRIEF REPORTS PHYSICAL REVIEW B 83, 012201 (2011)

Figs. 2(b) and 2(c). One can see that the data are independent
with these parameters and can also be fitted by the constant of
0.075 very well. The experimental comparison further testifies
to the previous model. As a comparison, Figs. 3(a) and 3(b)
also show the plots of KVm/Tg and GVm/Tg versus v. Fitting
to the data yields KVm/Tg ∝ 8.78 ν and GVm/Tg ∝ −0.86 ν,
which indicates that the sole K or G cannot characterize the
activation energy density well.

Most models for flow in glasses and supercooled liquids
consider the case of simple shear, which involves only shear
stress and a shear modulus. Our model suggests that both
the homogeneous and inhomogeneous flows, on one hand, are
the shearing process, and on the other hand, must generate free
volume which is a form of dilatation (in fact, the shear-induced
dilatation has been widely observed8,22,25,27), and demonstrates
that both shear and free volume are important for flow in glass

transition, and provides an intuitional picture of the flow of
the atoms or atomic groups in glass or liquid. Furthermore, the
formation of shear bands when the BMG’s deform plastically
is thought to be akin to the process of glass transition.4,5

This means that both the shear11 and the dilatation27 could be
involved in the formation of shear bands. The characterization
of the flow activation energy sheds light on the fundamental
issues of glass transition and plastic deformation in metallic
glasses.
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