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We report that both shear and bulk moduli, not only shear modulus, are critical parameters involved in both
homogeneous and inhomogeneous flows in metallic glass. The flow activation energy (ΔF) of various glasses
when scaled with average molar volume Vm, which is defined as flow activation energy density ρE=ΔF/Vm,
can be expressed as: ρE = 10G + K

11 . The extended elastic model is suggestive for understanding the glass
transition and deformation in metallic glasses.

© 2010 Elsevier B.V. All rights reserved.

The mysterious glass transition phenomenon, which connects the
liquid and glassy states, has wide applications in daily life, industry,
and organism preservation [1–4]. In the past decades, intensive efforts
have been made to understand the glass transition [1,5–9]. To
understand the flow in supercooled liquid and glass, many models
have been proposed. The well-known models are the free volume
model, the Adam–Gibbs entropymodel, the mode-coupling theory and
elastic models [1–6]. A successful model of viscous liquids and glasses
must explain why the activation energy has such strong temperature
dependence and can correlate the activation energy to simple and
readily measurable parameter. Among these models, the elastic
models link the glass transition and elastic moduli of the glasses [1].
All the elastic models link the activation energy to the readily mea-
surable instantaneous shear modulus G. In metallic glasses, the glass
transition temperature (Tg) indeed shows clear correlation with the
elastic moduli such as Young's modulus E and G [10–18].

In this letter, based on the scaling laws between Tg and elasticmoduli
in metallic glasses, we demonstrate that the Vm scaled flow activation
energy (ΔF), that is, flow activation energy density, ρE=ΔF/Vm, is
determined by bothG andK in away of ρE=(10 G+K)/11. The physical
origin of the extended elastic model is discussed. The temperature
dependence of the viscosity of liquids approaching glass transition is

[1]: η = η0 exp
ΔF Tð Þ
kBT

� �
, where, η0 is a constant, and kB is the Plank

constant. At Tg, the viscosity of various liquids get to η(Tg)=1013 poise
[3] for metallic glasses. For most metallic glasses the value delivers a
good approximation for practical purposes, because most metallic
glasses have similar fragility around Tg.
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Fig. 1. (Color online) (a) Young's modulus E and shear modulus G of 46 kinds of metallic
glasses vs Tg. (b) The combination of moduli and molar volume Vm vs Tg follows a better
relationship. The solid lines are the linear fitting of the experimental data.
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Then, theΔF/Tg should be the same formetallic glasses. A variety of
elastic models have been proposed [1], which assume that ΔF is
proportional to the elastic modulus [1], e.g. ΔF∝G. Fig. 1(a) shows
experimental data of E and G vs Tg for 46 different kinds of bulk
metallic glasses (BMGs) (listed in Table 1). These BMGs cover many
typical alloy systems, including Zr-, Cu-, Ca-, Mg-, Ni-, Fe-, and rare
earth element based BMGs, and their thermal, mechanical and
physical properties are markedly different (Their values of Tg, E and
Poisson's ratio span from 317 K to 930 K, 23 GPa to 195 GPa, 0.276 to
0.41, respectively) [12,13]. The linear fitting results are E∝(0.206±
0.017)Tg and G∝(0.0759±0.0065)Tg. The relations between Tg and G
(and E) are key evidence for the elastic model [1], however, it can be
seen that the data are rather scattered, and the adjusted R-square (the
adjusted coefficients of determination [19]) are 0.755 and 0.741,
respectively, which denotes that G or K should not be the only pa-
rameter that is involved in glass transition.

In fact, according to the shoving model, a characteristic volume
Vc is involved in homogeneous flow of glass-forming liquids as
[1,14]: ΔF=GVc. In inhomogeneous flow of glasses, the activation
energy of a flow event unit (shear transformation zone, STZ) also
correlates with volume as [15,16]: ΔF=(8/π2)GγC

2 ζΩ, where Ω is
the volume of STZ and γC is the shear strain limit. Recently, it is

found that the elastic moduli scaled with Vm show better cor-
relations with the thermal and mechanical properties for metallic
glasses [17,18,20,21]. Thus, the characteristic volume could be an
important parameter involved in the flow event in glass transition
and glass. Fig. 1(b) shows the plot of GVm (and EVm) vs Tg for these
BMGs. Indeed, the data can be better fitted with EVm∝ (1.53±0.06)
Tg and GVm∝ (0.560±0.029)Tg, and the adjusted-R increases to
0.923 and 0.905, respectively. The results certify that the combina-
tion of G and Vm (E and Vm) does show much better correlation
with Tg and the Vm is another important parameter in governing the
glass transition.

It is found that the atom number N involved in the cooperative
flow events of STZ in metallic glasses is similar and around ~100

[15,16], and the volumeof STZ can be expressed as V = ∑
Nf100

i=1
vi = N Vm

NA

(where NA is the Avogadro constant). The inhomogeneous flow in
glass is a self-organized large number of local shearing events (or STZ)
[15–17], and the transition from local shearing to macroscopic shear
band results from the dramatic increase of the atom mobility and
softening along a shear plane motivated by the input mechanical
energy [15–17]. Thus, the transition is akin to a process of stress driven
glass-to-liquid transition or glass transition [17]. Then, the involved

Table 1
The compositions, Tg, average molar volume Vm, K, E, G, ν, and the combined parameter Moduli ⋅Vm/Tg of 46 different kinds of BMGs [11–21].

Compositions Tg K Vm cm3/mol K GPa E GPa G GPa ν GVm/Tg KVm/Tg (0.91 G+0.09 K)Vm/Tg

Ca65Mg8.54Li9.96Zn16.5 317 20.25 20.1 23.4 8.9 0.307 0.572 1.287 0.636
Ca65Mg8.31Li9.69Zn17 320 20.10 18.4 23.2 9.0 0.291 0.564 1.159 0.618
Yb62.5Zn15Mg17.5Cu5 385 19.24 19.8 26.5 10.4 0.276 0.520 0.989 0.562
Ce70Al10Ni10Cu10 359 16.94 27.0 30.3 11.5 0.314 0.543 1.274 0.609
(Ce20La80)68Al10Cu20Co2 366 16.78 32.6 31.8 11.9 0.338 0.544 1.496 0.629
Ce68Al10Cu20Nb2 345 16.70 30.1 31.0 11.7 0.328 0.564 1.455 0.644
(Ce80La20)68Al10Cu20Co2 355 16.69 31.8 31.1 11.6 0.337 0.547 1.494 0.632
Ce68Al10Cu20Co2 352 16.57 30.3 31.3 11.8 0.328 0.555 1.428 0.634
Ce68Al10Cu20Ni2 352 16.57 31.8 31.9 12.0 0.333 0.564 1.495 0.648
Ce68Al10Cu20Co2 351 16.44 30.1 30.3 11.5 0.333 0.532 1.411 0.611
La60Al20Co20 477 15.96 39.2 38.7 14.5 0.335 0.486 1.311 0.560
Pr55Al25Co20 509 15.07 43.5 45.9 15.4 0.341 0.456 1.287 0.531
Dy55Al25Co20 635 14.27 52.2 61.4 23.5 0.304 0.529 1.174 0.587
Tb55Al25Co20 612 14.15 50.2 59.5 22. 9 0.302 0.528 1.160 0.585
Ho55Al25Co20 649 13.85 58.8 66.6 25.4 0.311 0.542 1.255 0.607
Er55Al25Co20 663 13.55 60.7 70.7 27.1 0.306 0.553 1.241 0.615
Tm39Y16Al25Co20 664 13.51 66.1 77.5 29.7 0.305 0.604 1.345 0.671
Tm55Al25Co20 678 13.47 62.0 72.2 25.6 0.319 0.509 1.232 0.574
Lu39Y16Al25Co20 687 13.30 71.3 78.9 30.0 0.316 0.581 1.380 0.653
Lu45Y10Al25Co20 698 13.25 70.2 79.1 31.1 0.307 0.590 1.332 0.657
Lu55Al25Co20 701 13.20 69.2 80.0 30.6 0.307 0.576 1.303 0.642
Mg65Cu25Gd10 421 12.51 45.1 50.6 19.3 0.313 0.573 1.340 0.642
Mg65Cu25Y9Gd1 423 12.37 39.0 52.2 20.4 0.277 0.597 1.142 0.646
Mg65Cu25Y10 419 12.36 41.4 49.1 18.9 0.302 0.556 1.220 0.616
Mg65Cu25Y8Gd2 420 12.23 39.9 51.7 20.1 0.284 0.586 1.161 0.638
Mg65Cu25Y5Gd5 422 12.05 39.1 50.6 19.7 0.284 0.563 1.117 0.613
Mg65Cu25Tb10 415 11.95 44.7 51.3 19.6 0.309 0.565 1.288 0.630
Zr64.13Cu15.75Ni10.12Al10 640 11.68 106.6 78.4 28.5 0.377 0.519 1.946 0.648
Zr65Cu15Ni10Al10 652 11.65 106.7 83.0 30.3 0.37 0.541 1.906 0.664
Zr61.88Cu18Ni10.12Al10 651 11.51 108.3 80.1 29.1 0.377 0.514 1.915 0.640
Zr55Al19Co19Cu7 733 11.44 114.9 101.7 30.8 0.377 0.481 1.794 0.599
Zr57Nb5Cu15.4Ni12.6Al10 687 11.44 107.7 87.3 32.0 0.365 0.533 1.793 0.646
Zr57Ti5Cu20Ni8Al10 657 11.43 99.2 82.0 30.1 0.362 0.523 1.725 0.632
(Zr59Ti6Cu22Ni13)85.7Al14.3 689 10.74 112.6 92.7 34.0 0.363 0.530 1.755 0.640
Cu45Zr45Al7Gd3 670 10.71 105.9 90.1 33.2 0.358 0.530 1.692 0.635
Zr46.75Ti8.25Cu10.15Ni10Be27.25 622 10.21 111.9 100 37.2 0.35 0.610 1.836 0.721
Zr48Nb8Cu12Fe8Be24 658 10.17 113.6 95.7 35.2 0.36 0.544 1.756 0.653
Zr41Ti14Cu12.5Ni10Be22.5 625 9.79 114.1 101 37.4 0.352 0.586 1.787 0.694
Ni45Ti20Zr25Al10 733 9.61 129.6 109 40.2 0.359 0.527 1.699 0.632
Cu60Zr20Hf10Ti10 754 9.50 128.2 101 36.9 0.369 0.465 1.616 0.569
Pd77.5Cu6Si16.5 633 8.74 166.0 89.7 31.8 0.41 0.439 2.293 0.606
Pd64Ni16P20 630 8.29 166.0 91.9 32.7 0.408 0.430 2.183 0.588
Pd40Cu40P20 590 7.98 158.0 93.0 33.2 0.402 0.449 2.136 0.601
Pd39Ni10Cu30P21 560 7.97 159.1 98.2 35.1 0.397 0.500 2.264 0.658
Fe53Cr15Mo14Er1C15B6 900 7.94 180.0 195 75.0 0.317 0.610 1.588 0.698
Fe61Mn10Cr4Mo6Er1C15B6 930 7.48 146.0 193 75.0 0.281 0.603 1.174 0.654
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activation energy GV=NGVm/NA should have a linear correlation
with kBTg. The good linear correlation between GVm (and EVm) and Tg
in Fig. 1(b) confirms that the N involved in the cooperative flow
event for various metallic glasses is almost the same.

Based on above scaling laws and elastic model, we propose that it
is the flow activation energy density (ρE), not the flow activation
energy itself, that correlates with the elastic moduli as:

ρE¼
ΔF
Vm

∝Moduli: ð1Þ

The extended elastic model means that the energy per volume
needed in glass transition or in STZ in metallic glass is proportional to
the elastic moduli.

Previous elastic models [1] suggest that the atoms or atomic
groups go through pure shearing displacement which is independent
of K, and the ρE depends only on G. Recent works [18,20] and the
jamming model of granular systems [22] find that both shear and
dilatation are involved in the flow during glass transition and
deformation. Next, we further justify that the flow activation energy
density ρE relates not to G or K but both G or K. That is, the flow event
relates to both shearing transformation (corresponding to volume-
preserving G) and dilatation (corresponding to volume-nonpreser-
ving K). At Tg, the ΔF/Tg should be the same for all glasses that is
independent of Poisson's ratio or other moduli [3]. However, the
statistic analysis of both GVm/Tg and KVm/Tg for glasses listed in Table 1
linearly depends on ν as: KVm/Tg∝8.78ν and GVm/Tg∝−0.86ν, res-
pectively [Fig. 2(a)–(b)]. The relationships between ΔF/Tg and ν
should be neither the dashed black line (KVm/Tg) nor the short-dashed
olive line (GVm/Tg) but a constant like the solidmagenta line in Fig. 3(a).
The slope in the relationship of KVm/Tg vs ν is positive, while that of

GVm/Tg vs ν is negative. The bigger the slope of KVm/Tg vs ν (or GVm/Tg
vs ν) is, the less the contribution to ΔF of the modulus should be. This
indicates that if ΔF/Tg would be a constant it should not only relate to
G or K but a combination of both K and G. When the ratio of the
contribution of G and K is about 8.78: 0.86≈10:1, or alternatively
ρE =ΔF/Vm=(10 G+K)/11, the ΔF/Tg vs ν is a constant as shown in
Fig. 3(a). Fig. 3(b) shows the results of (0.91 G+0.09 K)Vm/Tg vs ν for
various BMGs. The data indeed can be well fitted by a constant of 0.63
and is independent of ν, which is consistent with the glass transition
phenomenon that the viscosity of all the liquids gets to the same value
at Tg. The ΔF=(0.91 G+0.09 K)Vm, which is independent of mass or
amount, is a kind of elastic energy, and the ratio ΔF/RTg=0.63/
R=0.076, which is dimensionless, can be regarded as some kind of
elastic strain stored in a glassy state [23]. Thus, the glass transition could
be regarded as the release or absorption of the elastic strain stored.

The acoustic velocity behaviors during glass transition further
verify the extended elastic model. The T-dependent transversal (Vs)
and longitudinal (VL) velocities change differently during the glass
transition process [1,24,25], and the ratio of their relative changes
is about:ΔVS

VS
: ΔVL

VL
≈2 : 1. From ρVS

2=G and ρV2
L = 4

3G + K , we
obtain that the relative changes of G and K in metallic glasses is:
ΔG
G : ΔK

K ≈5 : 1. In 3D space, there are two shear models (corresponding
to G) and one radial model (dilatation model corresponding to K)
when atomsmove. Thus, the contribution of G should be doubled, and
the ratio of the contribution of G and K in ρE should be about 10:1, that
is: ρE =(10 G+K)/11.

We further discuss why the elastic moduli show better correlation
with ρE rather than the activation energy itself. The shear elastic
energy density ϕ of a STZ can be expressed as ϕ(γ)=ϕ0 sin 2(πγ /4γC)
[15], where ϕo is the total barrier energy density and γ is the shear
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Fig. 2. (Color online) (a) KVm/Tg vs Poisson's ratio ν and (b) GVm/Tg vs ν for 46 kinds of
metallic glasses. The lines are the linear fit of the experiment data.
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ρE=Moduli which is Poisson's ratio independent. (b) The experiment data of
(0.91 G+0.09 K)Vm/Tg vs ν are well linearly fitted, denoting that (0.91 G+0.09 K)
Vm/Tg for various metallic glasses is independent of ν.
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strain. The G can be reduced from the ϕ, not the shear elastic ener-

gy, in a way of G=ϕ″|γ=0=
ϕ0

8γ2
C = π2

[15]. This indicates that G is

related to the barrier energy density. The K can be expressed as K =
V0

∂2U
∂V2 jV=V0 = ∂2 U

V0

� �
= ∂ V

V0

� �2 jV=V0

��
[21], where U is the atomic

potential energy, V0 is the atomic equilibrium volume, U/V0 is the
energy density and V/V0 correlates with elastic strain. In harmonic
approximation around V0, the U can be expressed in a parabolic form
as U=U0(1−αV/V0)2 [1], where α is constant depending on the
atomic bonding nature. This gives K=2α2U0/V0, which correlates with
the potential energy density at an equilibrium state. Thus, both G and
K are proportional to their corresponding deformation energy density.
Therefore, it is reasonable for ρE rather than the activation energy
shows correlation with the combination of K and G.

Most models for flow in glasses and supercooled liquids consider
the case of simple shear, which involves only shear stress and shear
modulus. Our model suggests that both homogeneous and inhomo-
geneous flows at one hand is a shearing process and on the other hand
must generate free volume which is a form of dilatation (in fact, the
shear induced dilatation has been widely observed [22]), and
demonstrates that both shear and free volume are important for
flow in glass transition and deformation, and provides an intuitional
picture of the flow of the atoms or atomic groups in glass or liquid.
Furthermore, the formation of shear bands when the BMGs deform
plastically is thought to be akin to the process of glass transition
[17,23]. Thus, this means that both the shear [26] and the dilatation
[22] could be involved in the formation of shear bands. However, due
to the critical difference between the two phenomena: the glass
transition is constraint-free, while the formation of shear bands is
stress-constraint, and the formation of shear bands then may involve
less dilatation.
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