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Prediction of shear-band thickness in metallic glasses
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We derive an explicit expression for predicting the thicknesses of shear bands in metallic glasses. The model demonstrates that the
shear-band thickness is mainly dominated by the activation size of the shear transformation zone (STZ) and its activation free vol-
ume concentration. The predicted thicknesses agree well with the results of measurements and simulations. The underlying physics is
attributed to the local topological instability of the activated STZ. The result is of significance in understanding the origin of inho-
mogeneous flow in metallic glasses.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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The shear-banding-mode plastic flow of metallic
glasses (MGs) at ambient temperature continues to fas-
cinate and challenge scientists [1–5] because of its phys-
ical origin and practical implications. The free volume
creation [6] and local heating generation [7], in which
shear-band thickness is an important factor [2,8], are
two potential causes of shear-banding instability in
MGs. Here, the shear-band thickness is the characteris-
tic width of the strain localization normal to the shear
plane, and is not involved in the ultimate failure. In gen-
eral, the thickness of shear bands in MGs is restricted to
a rather narrow range from several to 10 or more nano-
meters, regardless of chemical components and loading
methods (including tension, compression, bending,
indentation, rolling, etc.); this has been widely found
by direct experimental observations [9–15], or by numer-
ical simulations [16–18]. Such localization of plastic
flow, far smaller than the thickness (10–500 lm) of adi-
abatic shear bands (ASBs) in conventional alloys [19],
suggests that the shear bands in MGs have a structural,
rather than a thermal, origin [1,2,8]. Furthermore, the
coupled thermomechanical analysis of shear-banding
instability in MGs reveals that the onset of this instabil-
ity is mainly controlled by local free volume softening
[20] via discrete atomic jumps [6] or cooperative arrange-
ment of local atomic clusters, termed the ‘‘shear trans-
formation zone” (STZ) [21] or ‘‘flow defect” [22]. The
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STZ is the fundamental unit process underlying plastic
deformation associated with the free-volume evolution.
Although the study of thickness provides insight into
the origin of shear-banding instability, the theoretical
prediction of the shear-band thickness itself in MGs lags
well behind that of ASBs in crystalline alloys.

Very recently, Joshi and Ramesh [23] have predicted a
shear-band thickness of about 10–50 nm, based on a rota-
tional plastic deformation mechanism in nanocrystalline
materials at grain sizes approaching the amorphous limit
(�2 nm). The lower bound of their predicted thickness
agrees well with the shear-band thicknesses for many
MGs [2]. This means that the flipping of STZ may be valid
for the shear localization process in MGs. In addition, fi-
nite STZ sizes of about 1–2 nm (not reaching 2 nm) have
been identified by many recent works [24–28]. Interest-
ingly, the ‘‘10-time-rule” in granular materials [29] seems
to be roughly satisfied in MGs, i.e. the shear-band thick-
ness is approximately 10 times the STZ size, implying a
similar shear instability mechanism between the two
materials. However, the quantitative relationship be-
tween the thickness of the shear band and the size of
the STZ is still under investigation, and the underlying
precise physics that dominates the shear-band thickness
is not clear. In this paper, we present an explicit expres-
sion of the thickness of shear banding based on shear
instability due to STZs in metallic glasses. Its underpin-
ning nature is discussed.

Plastic deformation of MGs occurs by the cascade of
STZs or flow defects [3,21,22,30]. Subjected to an
sevier Ltd. All rights reserved.
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Figure 1. Dimensionless shear stress (black curve) and free volume
concentration (red curve) vs. shear strain for the homogeneous
deformation at a strain rate of 10�2 s�1; the peak value of free volume
concentration is denoted by n*. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of
this article.)

Figure 2. (a) Evolution of coalescence rate Gn of free volume
concentration with shear strain at a strain rate of 10�2 s�1; its peak
value is denoted by G�n. (b) The effect of applied shear strain rate on G�n
and n*.
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external shear stress s, an STZ with activation volume
Xa undergoes a characteristic shear strain ca(�1)at a rate
that depends on s. The concentration of STZs Cn,
namely the fraction of material that is available
to STZ operations in a unit volume element, is statisti-
cally related to the free volume concentration n by
Cn = exp(�1/n) [3,22]. Thus, the STZ operations in unit
volume element can be characterized by the evolution of
n as [20,31]:

@n
@t
¼ Dn

@2n
@y2
þ Gðs; nÞ; ð1Þ

where Dn is the diffusion coefficient of free volume con-
centration [31], and the net creation rate function G is
the combined rate of annihilation and generation of free
volume, and is taken to be dependent on the local con-
centration of free volume n, and the shear stress s [6].
The explicit expression of G was given first by Spaepen
[6], as follows:
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where v is a geometrical factor, v* is the critical volume or
the effective hard-sphere size of an atom, the attempt fre-
quency m0 is essentially the frequency (approximately the
Debye frequency) of the fundamental mode vibration
along the reaction pathway [22], DGm is the activation en-
ergy, kBT is the thermal energy, S is the Eshelby modulus
(S = 2(1 + m)l/3(1 � m) where l is the shear modulus m is
the Poisson’s raio), X is the atomic volume, and nD is
the number of diffusive jumps necessary to annihilate a
free volume equal to v*. Meanwhile, the macroscopic plas-
tic strain rate can be written as [3,21,22]:

_cp ¼ CncaHa; ð3Þ
where the net activation frequency Ha of an STZ

obeys a rate law of the form [3]: Ha ¼ m0 exp � Q�sXa
kBT

� 	h
� exp � QþsXa

kBT

� 	
�, here Q is the activation energy barrier

for an STZ under an unstressed field [30]. In addition,
the momentum balance, in the absence of body forces,
requires that [20,31]:

q
@2c
@t2
¼ @2s
@y2

: ð4Þ

where q is the mass density, and the total shear strain c
can be decomposed into elastic and plastic parts, i.e.
c = ce + cp, here the elastic strain ce obeys Hooke’s
law: ce = s/l. Eqs. (1)–(4) govern the inhomogeneous
deformation of MGs.

Shear banding, as a physically unstable event, is
investigated through a linear perturbation analysis, i.e.
seeking an inhomogeneous solution with respect to
small perturbations to the homogeneous solution. The
homogeneous solution (sh, ch, nh) satisfies osh/oy = och/
oy = onh/oy = 0. For a typical Zr41.2Ti13.8Cu12.5-

Ni10Be22.5 (Vit 1) BMG, Figure 1 shows the stress–strain
curve (black) of homogeneous deformation, along with
the concentration of free volume vs. shear strain for a
strain rate of 10�2 s�1. For small perturbations it is as-
sumed that (ds, dc, dn) = (s*, c*, n*) exp (at + iky),
where (s*, c*, n*) are small constants that characterize
the initial magnitude of the perturbation, k is the wave-
number, and a is related to the initial rate of growth.
The stability of the deformation is now determined by
the sign of the real part of a: if Re(a) < 0, the shear
deformation is stable; if Re(a) > 0, it is unstable. The
stability analysis tells immediately that the critical wave-
length that may lead to runaway instability is:

kcrit ¼ 2p
Dn

G�n

 !1=2

: ð5Þ

where G�n is the free volume coalescence rate oG/on at the
critical point of instability. Perturbations with a wave-
length smaller than kcrit will die out, whereas the ones
with a wavelength larger than kcrit will grow. Based on
the homogeneous solution (Fig. 1), we can obtain the



Figure 3. Prediction of shear-band thickness W. (a) Dependence of
Poisson’s ratio m and activation free volume concentration n* on W for
fixed STZ size d = 1.5 nm. (b) Dependence of n* and d on W for fixed
m = 0.36.
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variation in Gn = oG/on with shear strain at a strain rate
of 10�2 s�1, as shown in Figure 2a. Obviously, Gn

reaches the peak value max [Gn] at the critical point of
instability; hence, G�n ¼ max½Gn�. Furthermore, it is
noted that, as the strain rate ranges from 10�3 to
103 s�1, G�n spans about seven orders of magnitude (from
�10�3 to 104 s�1), as shown in Figure 2b by the blue
curve. The G�n displays a highly positive rate-depen-
dence. According to Eq. (5), the critical wavelength
kcrit only depends on G�n if Dn remains approximately
constant before instability [20,31]. That is why shear-
band instability is more probable at high strain rates,
which is consistent with the available experimental
observations [32–34].

In fact, the critical wavelength is the embryonic nuclei
size of shear-banding instability, which is only valid for
a short time after instability [31]. The thickness of ob-
served shear banding often corresponds to the wave-
length that grows most quickly or the dominant
wavelength of the instability, km [19]. However, many
works conclude that km should be of the order of kcrit

[23,35–37]. Consequently, we can reasonably assume
that the thickness of a mature shear band is the final
dimension of the perturbation with the initial wave-
length kcrit, developing into the local steady-state flow
in the post-instability stage. In this stage, the diffusion
coefficient of the free volume concentration is expected
to obey the Stokes–Einstein equation [6,38]:
Dn ¼ kBT

6ðvf =d2Þg, where vf is the absolute free volume

(approximately the atomic volume), d is the diffusion
distance of free volume, and the shear viscosity can be
derived: g ¼ sy= _cp with the flow stress sy. As mentioned
previously, the STZ is a local rearrangement of atoms
around a high free volume site under shear stress. The
free volume site, as internal structural defects in MG,
is analogous to a dislocation in a crystal. A disloca-
tion can move a long distance only if its neighboring
atoms make a little move (usually a distance of less
than a lattice periodic). By the same token, it is plau-
sible that the free volume site can move or diffuse a
distance of an equivalent diameter or size of STZ
when a STZ disappears due to itself-induced free vol-
ume increase. Therefore, d is assumed to be roughly
equal to the STZ size. In addition, at the stress level
sy, the free volume coalescence rate can reduce to
[39] Gn � a_cp, where a = (kBT/S) (1/cavfn). Then, we
obtain the explicit expression of the shear-band
thickness:

W � kcritjsteady state ¼
2p
3

d n� � 1

cC
� 1þ m
1� m

� �1=2

ð6Þ

where n* is the activation free volume concentration
due to STZ-induced shear instability (see below).
The average shear yield strain cC = sy/l is almost a
universal constant of about 0.0267 for MGs [30]. This
equation indicates that the correlation between the
shear-band thickness and the STZ size does not follow
a simple linear relation, and the influence of other
parameters such as n*, cC and m should be included.

It is noted that among the parameters governing the
thickness of shear bands, both d and n* are often difficult
to determine precisely. Very recently, based on the John-
son–Sawmer cooperative shearing model [30], Pan et al.
[28] have developed a rate-jump nanoindentation meth-
od to characterize the STZs size of MGs. They found
that the equivalent sizes of STZ for a variety of MGs
are of 1.3–1.9 nm. This dimension agrees well with the
range of STZ sizes predicted by many previous works
[24–27]. In the following calculation, the range of
1–2 nm of STZ sizes d and the average value of 1.5 nm
are adopted. Let us now turn to discussion of the possi-
ble range of the activation free volume concentration n*.
Here, we assume that the homogenous steady state in
which the amount of free volume created is equal to
the amount of free volume annihilated can be achieved
in a mature shear band [21,40], because the shear-band
thickness is very thin (�10 nm). Therefore, n* in Eq.
(6) is approximately considered as the n value in the
steady state during homogeneous deformation. As
shown in Figure 1 (red curve), the n in the steady state
is very close to Max[n]. Thus, we reasonably choose
n* = Max[n]. The effect of strain rate on n* is shown in
Figure 2b by the red curve. Compared to G�n, the n*

exhibits a strain-rate-insusceptible behavior and ranges
from 0.050 to 0.135 with increasing strain rate from
10�3 to 103 s�1. According to Eq. (6), n* is closely re-
lated to the shear-band thickness; this might be the main
reason that the shear-band thickness is not sensitive to
strain rate. Considering the broad MG systems from
ideally brittle Mg-based to typical tough Zr-based, we
reasonably choose the fiducial interval [0.001, 0.200] of
n*. In addition, MGs have Poisson’s ratios m of �0.28–
0.42 [41,42]. We first examine the influences of m and
n* on the thickness W for fixed d = 1.5 nm, as shown
in Figure 3a. The predicted shear-band thicknesses of
several to ten or more nanometers exhibit a fair agree-
ment with the available experimental observations and
simulations [9–18]. W is insensitive to m but increases sig-
nificantly with increasing n*, indicating n* is a master
factor. Then, we take a typical value (0.36) of m, and fur-
ther explore the effect of the STZ sizes d on the thick-
ness, as shown in Figure 3b. We find that W is also
strongly dependent on d. Thus, one can conclude that
the shear-band thickness in MGs is mainly governed
by the STZ-activated free volume concentration incur-
ring instability, and the size of the STZ.

Next, we discuss the physical picture behind Eq. (6).
Since the fundamental unit process underlying plastic
flow is a STZ, the activation free volume facilitating local
shear instability is actually the threshold of free volume
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in activated STZs, beyond which the STZs become topo-
logically unstable. At the atomic cluster level, the free
volume threshold must be a probability (usually Gauss-
ian) distribution [6,21]. Egami’s theory of topological
fluctuations in the bonding network has predicted that
if the average local transformation volume strain is lar-
ger than about 10%, the local atomic cluster site will be-
come topologically unstable and be liquid-like [43]. This
average local volume strain can be analogous to the
mathematical expectation of the probability distribution
of local STZ-activated free volume concentration in plas-
tic flow. In addition, the recent work of Liu et al. [44] has
also revealed that there is a dividing line of free volume
concentration of about 0.10 between a densely packed
structure with coordination number (CN) of >10 and
loose one with CN < 10. Therefore, we reasonably
choose n* � 0.10, d = 1.5 nm and m = 0.36, and the cal-
culated shear-banding thickness W � 9 nm according
to Eq. (6). This value agrees well with the characteristic
thickness (�10 nm) of shear bands in various MGs [2],
demonstrating the intrinsic universality of local topolog-
ical stability of STZs in glassy structures undergoing
inhomogeneous plastic flow. In crystalline alloys, the
thickness of ASBs is controlled by a balance of between
plastic work and heat diffusion; its theoretical prediction
has been successfully established [19]. However, the
shear-band thickness in MGs is underpinned by a bal-
ance of free volume creation–diffusion via superposition
of STZs. Thus, the local topological instability of STZs,
tying up with their activation size and free volume, deter-
mines the thickness of shear bands in MGs, as predicted
by explicit expression (6) in the present work.

In summary, this study provides a physical under-
standing of the shear-band thickness in MGs based on
STZ-induced shear instability analysis. In particular, an
explicit expression of the thickness of shear bands, which
has not previously been available, is derived, and can ex-
plain why the shear-band thicknesses of various MGs
narrow down to around the order of 10 nm. The good
agreement between theoretical predictions and experi-
mental observations provides compelling evidence that
the shear instability of MGs originates from local STZs
activated by shear stresses. The findings have implica-
tions for understanding of the atomic-scale flow mecha-
nisms of MGs. In addition, combining our prediction
model (6) with Pan et al.’s experimental method of char-
acterizing STZs may provide a rough, but useful, ap-
proach to estimate the free volume concentration
within shear bands in MGs.
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