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Self-organized intermittent plastic flow in bulk metallic glasses
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Abstract

Under stress, bulk metallic glasses irreversibly deform through shear banding processes that manifest as serrated flow behavior. These
serration events exhibit a shock-and-aftershock, earthquake-like behavior. Statistical analysis shows that the shear avalanches can self-
organize to a critical state (SOC). In analogy to the smooth macroscopic-scale crystalline plasticity that arises from the spatio-temporal
averages of disruptive earthquake-like events at the nanometer scale, shear avalanches in glassy metals are another model system that can
be used to study SOC behavior. With our understanding of SOC behavior, we further demonstrate how to enhance the plasticity of glassy
(brittle) materials. It is expected that the findings can be extended to other glassy or brittle materials.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The deformation of crystalline metals has been a topic of
extensive research for many years and there are different
approaches or models established to describe the deforma-
tion [1]. Although the continuum approach can perfectly
elucidate some deformation phenomena, such as strain
hardening, yielding and plastic flow, it fails to account for
microscopic plastic deformation because of discontinuous
defect motions in crystalline materials, such as microfracture
process and avalanches in the motion of dislocations [2]. In
recent years, with the aim of gaining a better understanding
of the microscopic inhomogeneous deformation behavior of
crystalline metals, statistical deformation analysis has been
conducted [3–6]. In stressed ice single crystals, a self-organi-
zation of collective dislocation dynamics into a scale-free
pattern of dislocation avalanches is characterized by inter-
mittency, power-law distributions of avalanche sizes,
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complex spatio-temporal correlations and aftershock
triggering [3]. Polycrystalline plasticity is also characterized
by intermittency and dislocation avalanches, but, due to hin-
drance by grain boundaries, internal stresses will eventually
push the dynamical system into a supercritical state, off the
scale-invariant critical regime, and then trigger secondary
avalanches in neighboring grains [4]. This scale-free intermit-
tent flow behavior is also observed in microcrystals, where it
is dependent on the microcrystal size [5,6]. As the microcrys-
tal size decreases to zero, i.e. a glassy state, it is unclear
whether the plastic flow follows this scale-free intermittent
behavior.

The development of bulk metallic glasses (BMGs) exhib-
iting different compressive ductilities provides a good model
for facilitating the statistic analysis of the plastic flow of
glassy materials [7–11]. As this kind of material contains
no defects to control the mechanical behavior, the formation
and propagation of shear bands replace the dislocation
motion to produce plastic strain [12,13]. This shear banding
behavior in BMGs is manifested as a sequence of serration
events (serrated flow), including the aggregation and
release of deformation energy during compressive plastic
rights reserved.
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deformation, which feature as discrete bursts of plasticity
[14]. The shear avalanche then results in the catastrophic
fracture of BMGs. Although it is of the utmost importance
to understand the dynamic intermittent shear motion of
BMGs so as to improve their ductility, the reason for their
intermittent serrated flow behavior is still not very clear,
and the correlation between the dynamics of the intermittent
strain bursts and the macroscopic plastic instability of
BMGs has yet to be reported. In this paper, statistical defor-
mation analysis is conducted for five BMGs with different
plasticity (i.e. Zr55Cu30Al10Ni5, Zr41.25Ti13.75Ni10Cu12.5-
Be22.5, Cu42.5Ti42.5Zr2.5Hf5Ni7.5, Zr51Cu23.25Ni13.5Al12.25 and
Cu47.5Zr47.5Al5 BMGs), and the relationships between
ductility and the possible cumulative distribution of shear
avalanches is characterized.

2. Experimental procedures

Alloy ingots were prepared by arc melting a mixture of
pure metal elements in an argon atmosphere, followed by
suction casting into copper moulds to form rod-like
BMG samples 2 mm in diameter. The structure of the
glassy phase of the as-cast BMG specimens was checked
by transmission electron microscopy and X-ray diffraction,
and the surface of the specimens was observed with a JEOL
JSM-6335F scanning electron microscope (SEM). Two
ends of compressive test specimens with a length/diameter
ratio of 2 were carefully ground to 1 lm. Compression tes-
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Fig. 1. Serrated flow behavior in the compressive deformation of BMGs.
Zr55Cu30Al10Ni5; Curve B: Zr41.25Ti13.75Ni10Cu12.5Be22.5; Curve C: Cu42.

Cu47.5Zr47.5Al5. (b) Elastic energy density for one serration event. The serratio
plot of |dr/dt| for a part of serrations in Curve B. (d) Stress–time curve for two
the stress drop time.
tes were conducted in a servo-hydraulic driving MTS-type
machine with a strain rate of 2.5 � 10�4 s�1.

A nickel layer was electrodeposited on the surface of the
Zr41.25Ti13.75Ni10Cu12.5Be22.5 BMG in an aqueous nickel
sulfamate–chloride electrolyte. A nickel plate with a purity
of 99.99% was used as an anode and the BMG rod was
used as a cathode. The BMG rod was rotated driven by
a motor at a rotate speed of 60 rpm to guarantee that the
electrodeposited nickel sleeve had an even thickness. Differ-
ent plating times (1 and 3 h) were used to make Ni sleeves
of different thicknesses. Electrodeposition was conducted
at a temperature of 25 �C, with a current of 40 mA and a
voltage of 1.1 V. The distance between the anode and the
cathode was 30 mm.

3. Self-organization to a critical state (SOC) behavior in the

serrated flow of BMGs

The compressive nominal stress–strain (r–e) curves of the
five as-cast BMGs exhibit serrated flow behavior after yield-
ing (see Fig. 1a). The mechanical property parameters are
listed in Table 1. The serration process is characterized by
repeating cycles of a sudden stress drop followed by reload-
ing elastically (see Fig. 1b), and exhibits the following char-
acteristics. First, the stress–time (r–t) curve and the
corresponding |dr/dt| plot for the plastic strain stage clearly
show that the time interval (tn) between any two neighboring
serrations is inhomogeneous, i.e. t0 – t1 – � � � – tn+1, which
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(a) Compressive nominal stress–strain curves of five BMGs. Curve A:

5Ti42.5Zr2.5Hf5Ni7.5; Curve D: Zr51Cu23.25Ni13.5Al12.25 and Curve E:
n is extracted from Curve B. (c) Stress–time curve and its corresponding
representative serrations in Curve B. tI is the stress increase time and tD is



Table 1
Plastic strains (ep), Young’s moduli (E), yield stresses (rE), scaling exponents (b), normalization constants (A) and cut-offs for the elastic energy density
(dC) of the BMGs.

BMGs eF ep E (GPa) rE (MPa) b dC (J m–3) A

Zr55Cu30Al10Ni5 0.030 0.014 104 1677 0.40 2950 11.4
Zr41.25Ti13.75Ni10Cu12.5Be22.5 0.031 0.012 101 1925 0.39 4804 9.1
Cu42.5Ti42.5Zr2.5Hf5Ni7.5 0.064 0.044 107 2096 0.41 5768 9.9
Zr51Cu23.25Ni13.5Al12.25 0.086 0.066 90 1805 0.39 6649 8.8
Cu47.5Zr47.5Al5 0.116 0.096 83 1638 0.40 12635 9.5
17.8 lm thick Ni sleeve 0.046 0.028 91 1644 0.28 3485 4.3
55.3 lm thick Ni sleeve 0.111 0.089 81 1770 0.29 2820 3.8
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suggests that the serration events lack any typical time scale
(see Fig. 1c) [2]. Secondly, the stress increase time (tI) being
7–21 times larger than the stress drop time (tD) (see
Fig. 1d) suggests that the process under external stress (stress
increase) is much slower than the internal relaxation process
(stress drop). Thirdly, because the number of serration
events ranged from 33 to 204 in different BMGs and one ser-
ration event could correspond to the operation of several
shear bands [10], the serrated flow include many shear bands,
i.e. a large number of interacting entities. These characteris-
tics indicate that the plastic deformation of BMGs should be
considered within a close-to-criticality nonequilibrium
framework [13], reminiscent of the concept of SOC behavior
[15]. In addition to the three characteristics mentioned
above, the conditions necessary for SOC behavior include
statistical properties following a power-law distribution,
which will be discussed next.
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Fig. 2. Sketch of the method for eliminating the influence from the vibration o
Calculation of the stress vibration amplitude. (c) Compressive load–displacem
curves of the baseline from the MTS machine and the BMG, respectively, aft
The stress–time curve (see Fig. 1c) shows that some tiny
stress undulations (indicated by triangles) appear on the
serration events. These small stress undulations are possi-
bly induced by a vibration resulting from the motion of
the cross-heads in the MTS machine. In Fig. 2, the com-
pression stress–strain curve of the Cu47.5Zr47.5Al5 BMG
(curve E in Fig. 1a) is chosen as an example to show how
the influence of the vibration from the MTS machine is
eliminated. Theoretically, the elastic deformation of BMGs
must exhibit a perfect linear behavior. However, by enlarg-
ing the stress–strain curve in the elastic deformation stage
(enclosed in a rectangle in Fig. 2a), small strain fluctuations
(shown in the inset of Fig. 2a) can be easily seen, which is
possibly generated by the vibration of the MTS machine.
Through linear fitting in the elastic deformation stage, a
baseline (or an ideal linear elastic stress–strain curve) is
plotted in Fig. 2b. When the baseline is subtracted from
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the actual stress–strain curve, the stress vibration ampli-
tude of approximately of 12 MPa can be calculated, as
shown in the inset of Fig. 2b. The stress fluctuation curve
was also transformed to a load–time curve, as shown in
Fig. 2d. In order to confirm that this vibration resulted
from the natural vibration of the MTS machine, a com-
pression test without BMG sample was conducted. The
baseline vibration of the MTS machine, i.e. the load–dis-
placement curve of the MTS machine without any sample,
was obtained, and is plotted in Fig. 2c. Small displacement
fluctuations were observed (shown in the inset of Fig. 2c)
by enlarging the baseline enclosed by the rectangle. After
subtracting the linearly fitting curve (see Fig. 2c), the
load–time curve of the baseline was found to match the
load–time curve of the Cu47.5Zr47.5Al5 BMG very well
(see Fig. 2d), illustrating that the vibration in the elastic
deformation was caused by the MTS machine. In order
to eliminate this effect, any serration events with a stress
increase less than 12 MPa in the plastic strain stage were
excluded in our statistical analysis. Similarly, the stress
vibration amplitudes for other four BMGs were found to
range from 9 to 12 MPa (not shown).

One serration event includes a process of elastic energy
accumulation and a process of elastic energy release. The
elastic energy density of one serration event (Dd) is
Dd ¼ 1

2
DrEDeE, where DrE and DeE are the elastic stress

and elastic strain in one serration event, respectively (see
Fig. 1b) [14]. Ergodic processing of the elastic energy den-
sity, as shown in Fig. 3, shows that a cumulative probabil-
ity distribution, i.e. the percentage of the number of
serration events with the elastic energy density being larger
than an elastic energy density, P(PDd), is nonlinearly
dependent on the value of Dd [16]. It is obvious that smaller
elastic energy densities are more probable and will follow a
power-law distribution. The larger elastic energy densities
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Fig. 3. Cumulative probability distributions for the elastic energy densities of t
compressive stress–strain curves. The solid lines are fitted by Eq. (1).
do not follow a power-law distribution, and decrease expo-
nentially in probability. The cumulative probability distri-
butions of the five BMGs have a universal scaling
function, which can be approximated well by a power-
law distribution function accompanied with a squared
exponential decay function [6,17]:

P ðPDdÞ ¼ ADd�b exp½�ðDd=dCÞ2� ð1Þ
where A is a normalization constant, b is a scaling exponent
and dC is the cut-off elastic energy density. The fitting param-
eters for the five BMGs are listed in Table 1. The b values are
kept constant at 0.40 ± 0.01. Therefore, we have essentially a
power-law relation with an exponent of about 0.40, up to the
larger value of the elastic energy density, i.e. the dC value,
where the squared exponential decay factor comes into play.
In contrast to the b value, which is constant, the dC value in-
creases with the increase in the ductility of the BMGs. Three
parameters, b, Dd and dC, provide a fingerprint reflecting the
dynamics of shear deformation in BMGs.

As the release of elastic energy mainly activates flow
events in liquid-like solids [18,19] and the flow events in
glassy metals are thought to be shear transformation zones
(STZs) [20–23], the elastic energy of serration events is con-
sumed by the STZs configurationally hopping. The activa-
tion barrier (W) for one STZ configurationally hopping
between two stable states can be expressed as W ¼
W gðG=GgÞ2, where Wg and Gg are the flow barrier and shear
modulus, respectively, at the glass transition temperature,
and G is the shear modulus at room temperature [24]. For
most metallic glasses, the values of Wg and Gg are
�2.5 � 10�19 J and�30 GPa, respectively [24,25]. The value
of G is 34.8 GPa (Zr51Cu23.25Ni13.5Al12.25 BMG), measured
ultrasonically. The activation barrier for one STZ can then
be estimated to be approximately 3.4 � 10�19 J in BMGs.
Since the elastic energy in the serration event is used to acti-
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vate the motion of the STZs, the amount of the hopped STZs
in one serration event (N) can be calculated by N = Dd/W.
Multiplying the effective STZ volume (X), the amount of
the hopped STZs can reflect a volume of shear band formed
in one serration event. In the present study, since the shear
band extends along a shear plane which deviates from the
compression direction by 42�, the shear plane area (A) is
approximately 4.7 � 10�6 m2. The thickness of the shear
band is assumed to be approximately 10 nm [26]. Then the
volume of one shear band fully crossing the shear plane of
the BMGs is calculated to be approximately 4.7 �
1013 nm3. Considering that the effective STZ volume roughly
ranges from 2.5 to 6.6 nm3 [27], one shear band formation
should be composed of 7.1 � 1012–1.9 � 1013 hopped STZs,
so it should take 2.4 � 10�6–6.5 � 10�6 J for a shear band to
be fully sheared across the shear plane of the BMG samples.
The corresponding energy density is approximately 190–
513 J m–3 due to our sample volume of �12.6 � 10�9 m3.
The elastic energy densities in the serration events of the five
BMGs ranged from 153 to 18553 J m–3 (cf. Fig. 3).

It is obvious that the lowest elastic energy density of
153 J m–3 measured from the compression stress–strain
curves is lower than the range of the elastic energy density
for the shear band formation (190–513 J m–3), which sug-
gests that, in the smaller serration events, the shear band
possibly cannot shear across the whole cross-section of
the specimen. To confirm this, we traced several shear
bands on the Zr51Cu23.25Ni13.5Al12.25 BMG strained to
�0.05 by using the SEM (see Fig. 4a–c). Fig. 4b and c
shows that highly branched secondary shear bands ema-
nate from a primary shear band and that they are arrested
and cannot sweep the whole shear plane. It is obvious that,
besides the primary shear bands formation, the emanation
of the branched secondary shear bands also consume a part
of elastic energy. Considering this, even the serration
events with a large elastic energy, i.e. >513 J m–3, cannot
possibly provide sufficient energy to make the shear band
shearing across the whole shear plane of the specimen.

For the larger serration events, i.e. those with elastic
energy in the serrations�513 J m–3, the experimental results
suggest that the simultaneous formation of several shear
bands and the shear displacing along a shear plane (see
Fig. 4e) could consume the elastic energy [10]. In particular,
for these larger serration events, the shear displacement
needs more energy to activate more STZs in one serration
event operation, which results in a higher elastic energy den-
sity (see Fig. 4e). Accompanying this shear displacement, a
viscous layer will be formed in the shear bands due to adia-
batic heating, which must consume a part of elastic energy
[28]. Once the viscous layer has formed in the shear bands,
the shear modulus will dramatically decrease, suggesting
that the activation barrier of the STZ will be reduced due
to W ¼ ð8=p2Þc2

2GX (where cc is the shear strain limit of
BMGs [29]). As such, the elastic energy released from the ser-
ration events will mainly be consumed by adiabatic heating.

The necessary energy of adiabatic heating (CA) for one
shear band shearing across whole cross-section of specimen
can expressed as CA ¼ AltqCpDT , where A is the shear
plane area (�4.7 � 10�6 m2), q is the density (�6.5 �
106 g/m3), lt is the thickness of shear band (10 nm), Cp is
the heat capacity and DT is the adiabatic heating tempera-
ture [30]. In the present study, the q value is approximately
6.5 � 106 g m–3, the Cp value is �1 J g–1 K–1 [31] and the
DT value is approximation 377 K according to experimen-
tal observations [32]. Thus the CA value can be roughly esti-
mated to be 1.2 � 10�4 J, i.e. 9524 J m–3. Considering that
the shear displacement possibly occurs in several shear
bands, the actual CA value must be higher than the esti-
mated value of 9524 J m–3. Therefore, the estimated value
is consistent with the experimental value of �18,000 J m–3.
This suggests that the elastic energy density, Dd, is associ-
ated with the shear avalanche size although it is not possi-
ble to quantitatively construct the link between the elastic
energy of one serration event and shear banding.

Introducing the squared exponential decay function into
the power-law function accounts for the finite elastic
energy in the serration event [33]. The dC value is a charac-
teristic parameter that can be linked to a microstructural
characteristic scale, such as the dislocation propagation
characteristic length confined by the grain boundary in
crystalline solids [13]. For the BMGs, since the Dd value
is associated with the amount of the STZs moved, the dC

value should correspond to the characteristic shear size of
the BMGs. Larger ductility indicates that more STZs will
be triggered to render the shear deformation, which results
in an increase in the characteristic shear size.

The universal exponent of 0.40 in different BMGs con-
firms that the serrated flow behavior is SOC behavior
[6,16,34,35]. The serrated flow behavior of BMGs is similar
to that of polycrystals and rock rupture [4,36], butdiffers
from that of single crystals in two ways: (i) the observed
power-law exponent is independent of plastic strain, yield
stress, chemical composition, and so forth and (ii) the
cut-off of this power-law scaling is observed towards large
amplitudes. An important feature of SOC behavior is a
self-similar or scale-free pattern, which means that struc-
tures on one scale appear to be the same as structures on
other scales. To further characterize this SOC behavior,
we looked further at the elastic energy density distribution
along the strain of the five BMGs further observed (see
Fig. 5).

The elastic energy distribution of the ductile BMGs
(Cu42.5Ti42.5Zr2.5Hf5Ni7.5, Zr51Cu23.25Ni13.5Al12.25 and Cu47.5-
Zr47.5Al5) can be divided into Region I and Region II (see
Fig. 5). Serration events in Region II have greater elastic
energy than those in Region I, which is shown in Fig. 5c–e.
Among the BMGs with less ductility (see Fig. 5a and b),
the two divided regions are not significant.

The enlarged stress–strain curve of the Zr51Cu23.25-
Ni13.5Al12.25 BMG (representing the ductile BMGs) is
shown in Fig. 6a. The profile of the stress–strain curve in
Region I shows that a large serration event is frequently
followed by a succession of serration events with a much
smaller degree of elastic energy (Curve I in Fig. 6a). This



Fig. 4. SEM images for shear bands evolution on the surface of the Zr51Cu23.25Ni13.5Al12.25 BMG. (a) Overview of the BMG strained to �0.05. (b) The
morphology corresponding to the area circled by a dot rectangle in (a) shows that one shear band does not shear across the whole cross-section of
specimen (pointed out by a dot arrow). Points A and B are the shear band nucleation point and the branched point, respectively. The branched shear
bands are indicated by solid arrows. (c) The morphology of the branched shear bands, corresponding to the area circled by a solid rectangle in (a). The
main shear bands are indicated by dotted arrows and the branched shear bands are indicated by solid arrows. (d) Overview of the fractured BMG. (e) The
shear displacement along one shear plane is indicated by arrows on the fractured BMG, corresponding to the area enclosed by a rectangle in (d).
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behavior is analogous to that a stress shock under rising
strain is followed by several aftershocks at smaller magni-
tudes. The smaller stress undulations in the aftershocks,
i.e. the smaller serration events, can push the system to
self-organize to a new critical state. In Region II, the serra-
tion events are of greater magnitude and are not followed
by smaller serration events, i.e. after the main shock, smal-
ler aftershocks do not occur, which means that self-organi-
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smaller elastic energy densities are covered by blue boxes. (b) Stress–strain curve for the Zr41.25Ti13.75Ni10Cu12.5Be22.5 BMG. The serration events with
smaller elastic energy densities are covered by a blue box.
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zation behavior is weaker (Curve II in Fig. 6a). Moreover,
for the BMG with the least plasticity (Zr41.25Ti13.75Ni10-
Cu12.5Be22.5), although larger serration events followed by
several smaller events cold be observed (enclosed by a rect-
angle in Fig. 6b), the number is much less than that in the
ductile BMGs, which suggests that SOC behavior is weak
in the BMGs with smaller plasticity. On the other hand,
the smaller dC values in the two BMGs with the smallest
plasticity suggest that the exponential decay happens in a
smaller elastic energy magnitude and the STZs activated
in whole serrated flow are much less than those in the duc-
tile BMGs. In this case, there is not enough spatio-tempo-
ral medium to bear the self-organization process for the
SOC behavior, thus a tiny plastic flow appears.

The self-similar pattern presenting in the serration
events is reminiscent of the fractal network [37]. The fractal
dimension given by Df = 1/b = 2.49 in the plastic strained
BMGs, which is comparable to the fractal dimension of
the structure in BMGs (which is 2.31) [37]. The structure
of BMGs are characterized by efficiently packed clusters,
usually well-defined as medium-range order (MRO) on a
scale of approximately 1–2 nm, which is on the same length
scale of STZs [27]. These packed MRO construct the frac-
tal network [37]. Subjected to shear stress, these MROs (or
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STZs) will be activated and moved to shape the serrated
flow in the macroscope. It can thus be reasonably deduced
that the dynamic behavior of serrated flow originates from
the atomic structural fractal network of glassy phase
because the similar fractal dimensions happen in the ser-
rated flow and the packed MRO structure, respectively.

4. Effect of the external disturbance on serrated flow

Based on the above discussion, we suppose that if shear
avalanches in the serrated flow stage can self-organize to a
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critical state, then the plasticity of BMGs will be improved.
To confirm this conjecture, we investigated the serrated
flow behavior of the Zr41.25Ti13.75Ni10Cu12.5Be22.5 BMG
with different strain abilities. Enlightened by the case of
geometric confinement enhancing the plasticity of BMGs
[38], we electrodeposited a layer of nickel on the surface
of the Zr41.25Ti13.75Ni10Cu12.5Be22.5 BMG. The Ni sleeve
wraps perfectly around the BMG rod (see the insets in
Fig. 7a and b), which suggests that lateral confinement dur-
ing compressive deformation can effectively disturb the
plastic deformation of the BMG. Increasing the thickness
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of the Ni sleeve can improve the plasticity of the BMG, as
shown in Fig. 7a and b. The cumulative probability distri-
butions of the elastic energy density of the BMGs with dif-
ferent Ni sleeve thicknesses also follow the power-law
distribution function (see Fig. 7c). The b value and cut-
off amplitudes of dC are lower than those of the original
Zr41.25Ti13.75Ni10Cu12.5Be22.5 BMG (Table 1). The plastic
mechanism of the coated BMG includes shear banding
and a dislocation motion resulting from the crystalline Ni
sleeve, which results in the b value decreasing slightly com-
pared to that in the original BMG [4]. Furthermore,
because the yield strength of Ni film is as high as
�1050 MPa [39] during the plastic strain, the Ni sleeve
can provide a lateral confining stress that suppresses shear
displacement in the radial direction. At the same, the Ni
sleeve expands less than the BMG in the radial direction
because the Poisson’s ratio of nickel (0.30 [38]) is lower
than that of the original BMG (0.36) [40], which further
increases the confining pressure. This geometric confining
pressure can lead to highly dense shear bands [38,41],
which means that the plastic strain can be spread to more
shear bands, thus reducing the shear avalanche size. This
leads to decreases in the cut-off amplitudes of dC and an
increase in ductility. Compared with that in the original
BMG, the elastic energy density distribution spectra do
not show a significant Region II, i.e. a larger elastic energy
density region, before fracturing (see Fig. 7d). Further
enlargements of the stress–strain curves in Fig. 7a and b
show the self-similar pattern, i.e. a larger serration event
is followed by a succession of additional smaller serration
events (see Fig. 7e and f). We can reasonably conceive that
the increase in the density of shear bands for the BMG
wrapped in an Ni sleeve can tailor the elastic energy stored
in one larger serration event (such as the serration events in
the original BMG), i.e. the elastic energy is spread more
homogeneously over several serration events with smaller
amplitude, due to the density of shear bands increasing.
This tailoring process pushes the dynamic system, i.e. the
serrated flow, to approach the critical state. Thus a signif-
icant SOC behavior is achieved and the plasticity is
improved. The improvement in the plasticity of the BMG
through the electrodeposition of nickel on the sample
surface provides solid evidence to support our conjecture,
i.e. if shear avalanches in the serrated flow stage can
self-organize to a critical state, then the occurrence of frac-
ture can be postponed and BMGs can achieve good
ductility.

5. Conclusion

In summary, our results explicitly show that the univer-
sality of the scale-free intermittent flow can be applied to
glassy metals. The power-law distributions for the shear
avalanche size for a wide range of plasticities give evidence
that serrated flow dynamics is a new example of a self-orga-
nized critical system. The relationship between the distribu-
tion of shear avalanches and the plasticity of BMGs
suggests that the shear avalanches self-organized to a crit-
ical state can help improve ductility. The artificial external
disturbance of plastic instability to enhance SOC behavior
can effectively improve the ductility of glassy metals, which
could be especially important for toughening glassy mate-
rials. This newly discovered dynamic critical behavior
shows a hitherto unexplored approach for the deformation
of glassy metals, which is possibly valid for other glassy
systems sharing similar dynamics, including polymers and
oxidized glasses at the mesoscopic scale.
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