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Tunneling states and localized mode in binary bulk metallic glass
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The low-temperature specific heat of CusyZrs, binary bulk metallic glass is systemically measured from
1.8 K to 50.5 K. The obvious effect of the tunneling states is determined at several Kelvin by both specific
heat and electrical resistivity. The density of the electron-assisted tunneling states in the bulk metallic glass at
several Kelvin exceed the typical value in insulating glasses below 1 K by 2-3 orders of magnitude, and the
entropy of the tunneling states is about 7.85 mJ/mol K. The specific heat in the wide temperature range was
analyzed by the conventional Debye and Einstein models, and the results demonstrate the existence of the
localized mode which is correlated to the boson peak in the metallic glass.
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At low temperature, glasses exhibit a variety of interest-
ing thermal, vibrational, and acoustic properties of consider-
able theoretical and experimental interest, which are different
from those of crystalline solids. The specific heat of glasses
is directly related to its atomic structure, or its vibrational
and configurational entropy which is significantly affected by
the nearest-neighbor configuration. At low temperature, typi-
cally T<1 K, the specific heat C, of glasses depends ap-
proximately linear on temperatureﬁ) This is due to the exis-
tence of low-energy excitations which are commonly
interpreted as a two-level system arising from tunneling of
atoms or groups of atoms between two nearly degenerate
local energy minima.>? At T>1 K, the specific heat still
deviates from the expected 73 dependence, presenting a
broad maximum in C,/ T3 .* The universal feature is related to
a difference or excess in the vibrational density of states over
the crystalline Debye behavior, which is known as the boson
peak in glasses. Usually, the soft potential model,*> which
postulates the coexistence in glasses of acoustic phonons
with quasilocalized low-frequency (soft) modes, is used to
explain the excess specific heat of glasses. Nevertheless, the
specific nature of the low-frequency vibrations is still a mat-
ter of intense debate.

The tunneling states observed below 1 K for the most
cases are studied widely and systemically especially in insu-
lating glasses.!® The situation in metallic glasses is not
simple because of the electronic degrees of freedom. The
specific heat of both electrons and tunneling states is linear
T-dependent at low temperature; It is difficult to distinguish
the contributions to specific heat between electrons and tun-
neling states and to determine the density of tunneling states
in metallic glasses. Fortunately, there are some superconduc-
tive metallic glasses,7’8 where the conduction electrons can
be ignored and the tunneling states have been studied below
the superconductive temperature in the metallic glasses.””
However, the electron-assisted tunneling states in metallic
glasses have not been experimentally studied before.

The ribbons of CuZr metallic glasses had been investi-
gated extensively.”!' Some compositions of the CuZr glasses
show superconductivity. The density of tunneling states be-
low the superconductive temperature is close to the typical
value in insulating glasses in the order of about 10'®/cm?3*!!
corresponding to about 107® per atom. However, the tunnel-
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ing states above the superconductive temperature are not
studied. Furthermore, the previous work involved was
mainly about the properties in the narrow temperature range
(below 10 K). In this paper, the specific heat of a recently
developed simple CusyZrs, binary bulk metallic glass (BMG)
in a large temperature range (1.8—50.5 K) is systematically
studied. Compared with insulating glasses, the electron-
assisted tunneling states have much larger entropy and higher
density in the metallic glass. The specific heat of the BMG
can be fitted well in the wide temperature range by conven-
tional Debye and Einstein models indicating the existence of
the localized mode which is correlated to the boson peak in
the simple BMG.

CusyZrsy binary BMG was chosen as a model system be-
cause it is a simple nonmagnetic BMG with excellent glass-
forming ability.!> The BMG specimen was prepared by arc
melting the pure Cu and Zr elements and then produced by
suction casting the melt into a copper mold under a pure
argon atmosphere; the details of the synthesis were described
in Ref. 12. The specific heat measurement of the BMG with
mass of 38.98 mg was carried out with the heat capacity
option of a commercial Physical Properties Measurement
System (PPMS, Quantum Design Inc.). The relative error of
the specific heat measurement is less than 2%. The electrical
resistivity was measured as a function of temperature by the
PPMS using a standard four-probe technique.

The measured C, of the BMG from 1.8 K to 50.5 K is
shown as C,/T° vs T in Fig. 1(a). Figure 1(b) presents C,/T
vs T? plot in the temperature range of 1.8 K and 20.6 K.
Usually, the soft potential model*> is used to explain the
specific heat of glasses below 10 K. However, there is
no obvious hump in the C,/ T? vs T plot and the specific heat
in the wide low temperature range can be well fitted by
C,/T=y+ BT? without higher powers of T as shown in Figs.
1(a) and 1(b).> The soft potential model fails to explain the
results of the BMG in the wide temperature range.'?

The tunneling states contribute weakly to specific heat
near 10 K,2*1% so we can determine the electrons’ and
phonons’ contributions to specific heat near 10 K by the lin-
ear fitting C,/T=y+BT* [see Fig. 1(b)]. The values of y and
B, obtained from the fit, are 2.74 mJ/mol K2,
128.7 wJ/mol K*, respectively. Just like other BMGs,'3!
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FIG. 1. The specific heat C, of the CusyZrsy BMG in the tem-
perature range from 1.8 K to 50.5 K. (a) The specific heat plotted
as C,/ 73 vs T. (b) The specific heat, shown as C,/Tvs T2, the solid

line is the results of the fitting specific heat using the expression:
C,/T=y+pT".

the data deviate from the linear in the lower temperature
range, while the common phenomenon in BMGs has not
been paid much attention before. In the nonmagnetic metallic
glasses, the specific heat at low temperature mainly includes
the contributions of the tunneling states, electrons and
phonons. So after subtracting the electrons’ and phonons’
contributions which are determined around 10 K, the excess
of the specific heat of the alloy (AC=C,—yT—BT°), which is
shown in Fig. 2(a), should be the contribution of the tunnel-
ing states. The simple extrapolation in the glass is made by
drawing straight lines from the lowest temperature data point
to T=0, C=0 in Fig. 2(a) [these will be horizontal lines on
the C/T plot in Fig. 2(b)]. A Schottky-type specific heat
anomaly could be ascribed the specific heat excess, and its
high-temperature tail should obey a 7> dependence.® But like
other metallic glasses,'? the excess of the specific heat in Fig.
2(a) does not strictly follow the Schottky-type anomaly.

To further prove the deviation is due to the effect of the
tunneling states at several Kelvin, the electrical resistivity of
the BMG in the low temperature range was measured and
shown in Fig. 3. The resistivity of the BMG shows negative
temperature dependence. Below about 10 K, the resistivity in
alloys should mainly be attributed to the residual resistivity
and be close to a constant. However, the resistivity for the
BMG increases slowly with decreasing temperature below
about 13 K, and the T-dependent resistivity can be well ex-
plained by the Kondo-type model'¢
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FIG. 2. The excess specific heat of the CusyZrsyo BMG is shown
as AC vs T in (a) and AC/T vs T in (b). The black lines are the
extrapolated excess specific heat.

p(T)=py+A - py(T) =\ - In(T? + A?), (1)

where py, A, N\, and A are constants, py(7) is the regular
electron-phonon term which is also close to zero at low tem-
perature. The fitting result is shown in Fig. 3. The resistivity
of the BMG above 15 K obviously, deviates from the
Kondo-type model. The atoms (or clusters of atoms) in the
BMG maybe in tunneling states between two sides of a
double potential well, and the tunneling states affect the re-
sistivity of the BMG.'® The analysis of the resistivity reveals
that there is the obvious effect of the tunneling states in the
BMG at about several Kelvin.

The entropy of the tunneling states can be calculated by
AS=[{mx(AC/T)dT, and the value is 7.85 mJ/mol K for the
BMG. Because the problem of the tunneling states is in anal-
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FIG. 3. The electrical resistivity of the CusyZrs, BMG above
2 K. The line is the least-squares fitting result by the Kondo model.
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FIG. 4. The fitting results (the solid line) of the specific heat of
the CusgZrso BMG between 1.8 K and 50.5 K. The dotted and
dashed-dotted lines represent contributions from the Debye mode
and Einstein mode, respectively; the dashed line is the contribution
of electrons.

ogy with that of spin-% particles in a magnetic field,® the
total entropy of the tunneling states can be calculated by
AS=n-RIn 2;here n (the density of tunneling states per atom)
is constant, and R is the gas constant and the value of n of
the BMG is calculated to be 1.36 X 1073. For example, there
are 1.36X 1073 mol atoms (or groups of atoms) in per mole
atoms of the BMG in tunneling states.

In metallic glasses, the effect of the tunneling states is
more obvious at several Kelvin which is greatly different
from that in the insulating glasses. The density of tunneling
states of the superconductive CuZr glasses below 1 K is
about 107° order per atom similar to many insulating glasses,
which is lower than that of the CusyZrs; BMGs at several
Kelvin. While in the nonsuperconductive metallic glass,
there are many conduction electrons, and the high density of
tunneling states may be due to conduction electrons assisted
tunneling, which is required by the electron’ dephasing quan-
tum theory.'+!’

The specific heat of solids in wide temperature range nor-
mally can be explained by Debye model

T\ (T et
CD=nD-3R6—f —> ¢,

'D 0 (eg— 1)2

where 6), is Debye temperature, n,, is a constant (usually
np=3 in solids) and stands for the Debye oscillator strength
per mole. When the electrons’ contribution, y7T [ is deter-
mined in Fig. 1(b)] is subtracted, the specific heat from
1.8 to 50.5 K of the BMG cannot be fitted by the Debye
model. So the Debye model, applied in the simplest way,
cannot quantitatively explain the experimental results, and an
additional quantized Einstein oscillator is required to model
the specific heat of the BMG in the wide temperature range.
As illustrated in Fig. 4, a model calculation including the
contributions of one Debye mode and one Einstein mode
leads to an adequate description of the experimental data.
The solid line through the specific heat data in Fig. 4 repre-
sents a fit to the equation
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Cp= ’yT+ CD+nE CE (2)

YT(y=2.74 mJ/mol K?) is shown in Fig. 4 by the dashed
line; Cp, shown in the dotted line, represents contribution of
the Debye mode with 6,=282.9 K and np=2.805; Cf, and
the dashed-dotted line in Fig. 4, is the contribution of the

Einstein mode
0, 2 LT
CE=R<?> (eaE/T—l)z’

with an Einstein temperature 6;=88.2 K and ny=0.195 that
stands for the Einstein oscillator strength per mole. The fact
that one Einstein mode is required to model the data indi-
cates the presence of the localized harmonic vibration mode
in the BMG."? In metallic compounds with the oversized
cage structure or large voids or enough large free volume,
some atoms or metallic ions are weakly bound and occupy
the oversized cages or voids, and the vibrations of these
loose “rattler” atoms are regarded as resulting in the inde-
pendent localized harmonic modes;'#-?3 The localized mode
is directly correlated to the density and size of voids. Re-
cently, a model for the structure of metallic glasses consist-
ing of the closely packed clusters (which is efficiently
packed solute-centered atomic cluster) is proposed,”* and
these interstitial intercluster sites are filled with additional
solute component atoms. The model is useful for understand-
ing short and medium range order in BMGs and allows pre-
dictions of new glassforming alloy composition.?* Mean-
while, the model helps to understand the low temperature
properties. In metallic glasses’ structure, the vibrations of
some solute atoms could act as loose or weakly bound atoms
in the interstitial intercluster sites, and the vibration of these
loose “rattler” atoms are regarded to induce the independent
localized modes. The case is similar to the localized har-
monic vibrational modes found in some compounds and
nanomaterials.'8-23

The low-energy vibrational spectra of many glasses devi-
ate in a characteristic way from Debye’s plane-wave density
of states, the excess modes being designated as the “boson
peak.”!-2326 There are many opinions as to the origin of the
boson peak. Presently two hypotheses prevail: the localized
vibrational modes and the collective propagating modes.?’
We have measured the specific heat at low temperatures for a
variety of typical BMGs currently available, and find that the
existence of the Einstein oscillators seems to be ubiquitous in
BMGs. In typical ZrTiCuNiBe BMG, the boson peak deter-
mined by both neutron scattering?’ and specific heat!? is as-
cribed to the localized vibrations. It is assumed that the lo-
calized vibrational mode (Einstein mode) has a Gaussian
distribution with a main frequency corresponding to the Ein-
stein frequency. Then the mode’s contribution to the vibra-
tional density of states has a Gaussian distribution,'>?® and
we can determine the vibrational spectrum with a peak by
the specific heat of CuZr BMG.'3. The Einstein oscillator in
CuZr BMG induces the deviation of the vibrational density
of state from the Debye squared-frequency law, and the ex-
cess state may be correlated with the boson peak. Following
the neutron scattering results of the glassy CuysZrs, alloy,”®

the frequency w distribution is roughly proportional to w*?
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between 4.7 meV and 7 meV, and deviates the Debye spec-
trum w”. Our specific heat result below 50 K is in agreement
with that of the neutron scattering,”® and the localized mode
is helpful in understanding the nature of the boson peak in
the BMGs.

In conclusion, the binary CuZr BMG shows obvious tun-
neling states effect at several Kelvin by the low-temperature
specific heat and electronic resistivity. The density of tunnel-
ing states in the BMG is much higher than the typical value
in insulating glasses below 1 K. The entropy of the tunneling
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states cannot be explained simply by Schottky-type specific
heat anomaly. The localized mode, which is correlated with
the boson peak, is found in the simple metallic glass.
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