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Abstract
The longitudinal and shear velocities, and their pressure dependences, for
various bulk amorphous materials, including bulk metallic glasses and non-
metallic glasses, have been measured by the ultrasonic pulse echo overlap
method under hydrostatic pressure (maximum: 2 GPa) or uniaxial compression
in ambient conditions. The second- or third-order elastic constants and the long-
wavelength acoustic mode Grüneisen parameter are calculated. The results
reveal that all metallic glasses have positive pressure dependences of both the
longitudinal and shear velocities, while for most non-metallic glasses both the
longitudinal and shear velocities decrease with increasing pressure. Thus, the
Grüneisen parameters evaluated for the mean mode and shear mode for metallic
glasses and non-metallic glasses have opposite signs. This indicates that the
influences of the short-range-order structure and bonding, correlating closely
with the atomic configurations in the various amorphous materials, play an
important role in the properties determined by vibrational anharmonicity. The
negative and positive Grüneisen parameters exhibit mode softening and stiffness
under high pressure, respectively. The results also clearly demonstrate that the
Grüneisen parameter is affected by the pressure derivative of the shear modulus,
especially for non-metallic glasses.

The equation of state (EOS) of a solid plays an important role when studying thermodynamic
properties in condensed matter physics, nucleonics and geophysics. The mode Grüneisen
parameter (or ratio) γi is a significant thermodynamic parameter, showing the relationship
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between the thermodynamic and statistical physics. It characterizes the change of lattice
vibrational frequency with volume, and can be written [1] as

γi = −d ln ωi/d ln V =
(

BT

ωi

)(
dωi

dP

)
(1)

where ωi is the frequency of the i th vibrational mode in a solid, V is the volume and BT

is the isothermal bulk modulus. To describe a theoretical thermodynamic property of solid
reasonably well, one has to relate extremely complex interactions between grains. So γ is both
an important parameter for describing anharmonic properties and an elusive parameter in the
EOS.

Commonly, the Grüneisen parameter γ can be obtained directly from some
thermodynamic parameters as well as the volume expansivity α, the isothermal (or adiabatic)
bulk modulus BT (or Bs) and the specific heat Cv at constant volume (or Cp, at constant
pressure). This is a thermal Grüneisen parameter, γth . γ can also be approximated by means
of continuum models from elastic data. It is an acoustic mode Grüneisen parameter, γ el .
Anderson has reviewed the progress in research on γ for the last 30 years [2] and detailed some
problems and shortcomings that are yet to be overcome or bypassed. One of the problems is
the effect of dG/dP on γ . Here G is the shear modulus.

In a Debye solid, the model frequency, ωi , is found in terms of the acoustic velocity
vi related to acoustic modes at low wavenumber k; i.e. ωi = vi k. The slope of the ω

versus k curve is v. So ultrasonic measurement is a powerful tool for studying elastic wave
propagation through a solid, and providing important information on the microstructural and
vibrational characteristics. The fundamental understanding of microstructural configurations
and properties for amorphous solids is not as developed as that for crystalline solids. In
the past decade, bulk metallic glasses (BMGs) with a larger three-dimensional size, with
complex multicomponent chemistry and excellent glass-forming ability (GFA), have been
developed [3, 4]. The BMGs can be made in a suitable form for measurement of elastic wave
propagation. So systematic study of anharmonic properties and microstructural characteristics
of various amorphous solids, including BMGs and non-metallic glasses such as oxide glasses
and amorphous carbon, is of importance.

Usually, a scalar parameter γ and tensor γ jk′s are expressed in terms of second- and third-
order elastic coefficients for arbitrary crystal symmetry [1]. Amorphous materials possess
only short-range order; they can be considered as isotropic solids. There are two components
of the Grüneisen parameter for acoustic modes at the long-wavelength limit. They are written
as follows [5]:

γl = − B

6C11

[
3 − 2C12

B
− 3

dB

dP
− 4

dµ

dP

]
(2)

γs = − 1

6µ

[
2µ − 3B

dµ

dP
− 3

2
B +

3

2
C12

]
(3)

where γl and γs are the longitudinal and shear mode Grüneisen parameter, respectively. B is
the bulk modulus and µ = C44 = ρV 2

s , C11 = ρV 2
l , C12 = C11 − 2C44. The mean mode

Grüneisen parameter is

γ el
av = 1

3 (γl + 2γs). (4)

They are also written in terms of second- and third-order elastic coefficients as follows [6] for
an isotropic and cubic system:
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γl = − 1

13

[
3C11 + 2C12 + C1

2C11
+

2(5C11 + 10C12 + 8C44 + 3C1 + 4C2 − 4C3)

3(C11 + 2C12 + 4C44)

+
2(2C11 + 3C12 + 2C44 + C1 + C2 − C3)

C11 + C12 + 2C44

]
(5)

γs = − 1

26

[
2(C11 + 2C12 + 2C44 + C2)

C44
+

4(5C11 + 4C12 + 2C44 + C2 + 2C3)

3(C11 − C12 + C44)

+
2(2C11 + C12 + C3)

C11 − C12

]
(6)

C1 = C111 + 2C112 C2 = C144 + 2C166 C3 = 1
2 (C111 − C123). (7)

However, the Slater equation [7] which assumes that the Poisson’s ratio σ is independent of
pressure is

γSlater = −1

6
+

1

2

(
∂ BT

∂ P

)
T

(8)

where the adiabatic bulk modulus Bs is used as an approximation instead of the isothermal
bulk modulus BT .

In this work, we present in situ acoustic studies under hydrostatic pressure on various bulk
glasses including ZrTi-, ZrNb- and Pd-based BMGs and non-metallic glasses such as oxide
glasses and single-composition carbon glass. Using the pulse echo overlap method [8, 9], the
longitudinal velocity (Vl) and shear velocity (Vs) of the ultrasonic wave propagating through
the sample, and their pressure dependences, were measured under ambient conditions and
under pressure (P) up to 0.5 GPa (maximum: 2 GPa for ZrTiCuNiBe22.5), respectively, in a
MATEC 6600 ultrasonic system with a measuring sensitivity of 0.5 ns and the carrier frequency
of 10 MHz. The experiments under high pressure were completed using a piston–cylinder
high-pressure apparatus; electric insulation oil was used as the pressure-transmitting medium
to ensure hydrostaticity. So the shear stress caused by non-hydrostaticity can be eliminated.
Upon pressure loading, the density and the length of the sample were modified by the Cook
method [10].

The experimental results (see figures 1 and 2) found that the change of Vl with P for
these BMGs is much larger than that of Vs , i.e. dVl/dP � dVs/dP . This result means that
the longitudinal acoustic phonons are softer than the transverse phonons under high pressure
in the BMGs. Both Vl and Vs increase smoothly with increasing pressure P and show an
approximately linear pressure dependence for dVl/dP > 0, dVs/dP > 0 over a range of
pressure up to 0.5 GPa; whereas Vl and Vs for most oxide glasses decrease with increasing
pressure for dVl < 0, dVs/dP < 0 and dVs/dP � dVl/dP . In particular, amorphous
carbon has dVl/dP > 0 and dVs/dP < 0; the change of Vl for float glass is very small and
dVl/dP > 0 up to 0.6 GPa and dVl/dP < 0 beyond that pressure up to 2 GPa.

Making a linear fit for the velocity versus pressure and using the above formulae (2)–(4)
and (8), the long-wavelength acoustic mode Grüneisen parameter γl , γs , γav and γSlater for the
various glasses are calculated and the results are listed in the table 1.

Table 1 shows clearly that both γl and γs are positive for BMGs because dVl/dP > 0,
dVs/dP > 0 and dVl/dP � dVs/dP , so γl > γs and the mean mode Grüneisen parameter
γav > 0; whereas for oxide glasses, dVl/dP < 0, dVs/dP < 0 and dVs/dP � dVl/dP
lead to γs < 0 and γav < 0. For fused quartz, microcrystal glass and (SiO2 + TiO2) glass,
a larger negative change of Vl than of Vs under pressure below 0.5 GPa leads to a negative
γl and to a larger negative γav. BMGs and oxide glasses have opposite signs of γs and γav.
This indicates different characteristics of the vibration frequency corresponding to the shear
wave under high pressure: γs increases gradually for BMGs, which means that the vibration
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Figure 1. The pressure dependences of the longitudinal velocity for various bulk glasses including
Zr-, Pd-based BMGs, oxide glasses (window glass: W-G; water-white glass: WW-G; float glass:
Na-G; SiO2 + TiO2 glass: Ti-G; fused quartz: F-Qua; microcrystal glass: Micro-G); single-
composition carbon glass (C-G).

Figure 2. The pressure dependences of the shear velocity for the various bulk glasses including
Zr-, Pd-based BMGs, oxide glasses and single-composition carbon glass.

frequency increases and the mode stiffness; while, in contrast, γs decreases gradually for oxide
glasses and carbon glasses—this is a soft-mode behaviour. There is a clear effect of dVs/dP
(or dG/dP) on γs and γav. It is noteworthy that this effect is not caused by the shear stress,
because the hydrostaticity of the applied pressure is guaranteed.

In the short range, correlated closely with atomic configurations, all BMGs have dense
randomly packed microstructure with a metallic bond. The degree of densification between
the atoms increases with applied pressure, so BMGs exhibit positive pressure derivatives of Vl

and Vs . Non-metallic glasses such as oxide glasses form chain-like objects or networks. The
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Table 1. The long-wavelength acoustic mode Grüneisen parameter for the various bulk glasses.

dVl/dP dVs/dP
Sample (km s−1 GPa−1) (km s−1 GPa−1) γl γs γav γSlater

Zr41Ti14Cu12.5Ni10B22.5 0.055 0.014 1.60 1.01 1.20 1.85
1.45b 0.66b 0.93b

1.65a 0.86a 1.12a

Zr41Ti14Cu12.5Ni9Be22.5C1 0.057 0.009 1.49 0.71 0.97 1.80
Zr48Nb8Cu12Fe8Be24 0.055 0.011 1.54 0.88 1.10 1.84
(Zr59Ti6Cu22Ni13)85.7Al14.3 0.062 0.017 1.76 0.67 1.03 1.95
Pd39.1Ni10.1Cu29.9P20.9 0.072 0.021 2.75 2.02 2.26 2.97
Amorphous carbon 0.76 −0.45 −0.04

0.150 −0.153 1.25a −0.27a 0.24a 2.03
Window glass −0.009 −0.097 0.27 −0.78 −0.43 1.27
Water-white glass −0.015 −0.053 0.22 −0.38 −0.18 0.71
Float glass 0.008 −0.046 0.27 −0.42 −0.19 0.88
SiO2 + TiO2 glass −0.462 −0.273 −2.25 −2.10 −2.15 −2.42
Fused quartz −0.403 −0.218 −2.10 −1.75 −1.86 −2.50
Microcrystal glass −0.390 −0.180 −3.17 −2.60 −2.79 −3.59

a Data obtained using (5)–(7) from third-order elastic constants.
b Uncorrected data—that is, the length and density of the sample are considered constant under high pressure.

bond angles between atoms turn under pressure and lead to negative pressure dependence of
the shear modulus. Carbon glass has a special structure—the C–C linkage is a superposition of
a covalent and a metallic bond, while the linkage between layers is a van der Waals bond—so
it not only exhibits a negative pressure derivative of Vs similar to that of oxide glasses, but
also exhibits a positive pressure derivative of Vl similar to that of the BMGs. This difference
in microstructure causes different pressure dependences of Vl and Vs , so it leads to different
anharmonic behaviour related mainly to the shear vibration γs under high pressure.

Table 1 also shows a large difference between γav and γSlater . This arises from Slater
equation (5), which assumes that Poisson’s ratio σ is independent of pressure. But our
experiment found that σ depends more strongly on pressure for carbon glass and oxide glasses
than for BMGs. If σ0 is defined as σ under ambient conditions, then when the pressure
increases to 0.5 GPa, �σ/σ0 = (σ − σ0)/σ0 for the former and the latter can be about
2%–5% and 2�–5�, respectively. The pressure dependence of σ should be considered,
especially for non-metallic glasses. So the values of γav listed in table 1 are more reasonable
than those of γSlater . By contrast, the Grüneisen parameters γl , γs and γav of the BMG
Zr41Ti14Cu12.5Ni10Be22.5 were calculated carefully in a different way. The results show that
the standard errors of γav , γ ∗∗

av and γ ∗
av are about ±0.065, while those of γav and γ ∗∗

av are about
±0.028. This means that the changes of length and density of the sample under high pressure
cannot be neglected.

For a number of glasses, there is a correlation between the mean long-wavelength acoustic
mode Grüneisen parameter γav and the linear coefficient α of thermal expansion [11] (see
figure 2 in [11]). We can estimate from the values of γav listed in table 1 that the values of α

for BMGs are much large than those for other non-metallic glasses. This is in conformity with
the thermal properties of BMGs [12].

In conclusion, the short-range microstructure correlated closely with atomic configurations
of amorphous materials causes different pressure dependences of the velocities Vl and Vs , so
it leads to different anharmonic behaviours under high pressure. The mode stiffness for the
BMGs and soft modes for non-metallic glasses relate mainly to the shear vibration. The effect
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of dG/dP on γav is evident, especially for non-metallic glasses. The pressure dependence of
σ should be considered in calculating Grüneisen parameters.
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